Files
why3/examples/sf.mlw
2018-06-15 16:45:58 +02:00

144 lines
3.6 KiB
Plaintext

(* Program verification examples from the book "Software Foundations"
http://www.cis.upenn.edu/~bcpierce/sf/
Note: we are using int (not nat), so we need extra precondition (e.g. x >= 0)
Note: we are also proving termination
*)
module HoareLogic
use int.Int
use ref.Ref
(* Example: Slow Subtraction *)
let slow_subtraction (x: ref int) (z: ref int)
requires { !x >= 0 }
ensures { !z = old !z - old !x }
= while !x <> 0 do
invariant { 0 <= !x /\ !z - !x = old (!z - !x) } variant { !x }
z := !z - 1;
x := !x - 1
done
(* Example: Reduce to Zero *)
let reduce_to_zero (x: ref int)
requires { !x >= 0 } ensures { !x = 0 }
= while !x <> 0 do invariant { !x >= 0 } variant { !x } x := !x - 1 done
(* Exercise: Slow Addition *)
let slow_addition (x: ref int) (z: ref int)
requires { !x >= 0 } ensures { !z = old !z + old !x }
= while !x <> 0 do
invariant { 0 <= !x /\ !z + !x = old (!z + !x) } variant { !x }
z := !z + 1;
x := !x - 1
done
(* Example: Parity *)
inductive even int =
| even_0 : even 0
| even_odd : forall x:int. even x -> even (x+2)
lemma even_noneg: forall x:int. even x -> x >= 0
lemma even_not_odd : forall x:int. even x -> even (x+1) -> false
let parity (x: ref int) (y: ref int)
requires { !x >= 0 } ensures { !y=0 <-> even (old !x) }
= y := 0;
while !x <> 0 do
invariant { 0 <= !x /\ (!y=0 /\ even ((old !x) - !x) \/
!y=1 /\ even ((old !x) - !x + 1)) }
variant { !x }
y := 1 - !y;
x := !x - 1
done
(* Example: Finding Square Roots *)
let sqrt (x: ref int) (z: ref int)
requires { !x >= 0 }
ensures { !z * !z <= !x < (!z + 1) * (!z + 1) }
= z := 0;
while (!z + 1) * (!z + 1) <= !x do
invariant { 0 <= !z /\ !z * !z <= !x } variant { !x - !z * !z }
z := !z + 1
done
(* Exercise: Factorial *)
function fact int : int
axiom fact_0 : fact 0 = 1
axiom fact_n : forall n:int. 0 < n -> fact n = n * fact (n-1)
let factorial (x: ref int) (y: ref int) (z: ref int)
requires { !x >= 0 } ensures { !y = fact !x }
= y := 1;
z := !x;
while !z <> 0 do
invariant { 0 <= !z /\ !y * fact !z = fact !x } variant { !z }
y := !y * !z;
z := !z - 1
done
end
module MoreHoareLogic
use int.Int
use option.Option
use ref.Ref
use list.List
use list.HdTl
use list.Length
function sum (l : list int) : int = match l with
| Nil -> 0
| Cons x r -> x + sum r
end
val head (l:list 'a) : 'a
requires { l<>Nil } ensures { Some result = hd l }
val tail (l:list 'a) : list 'a
requires { l<>Nil } ensures { Some result = tl l }
let list_sum (l: ref (list int)) (y: ref int)
ensures { !y = sum (old !l) }
= y := 0;
while not (is_nil !l) do
invariant { length !l <= length (old !l) /\
!y + sum !l = sum (old !l) }
variant { !l }
y := !y + head !l;
l := tail !l
done
use list.Mem
use list.Append
type elt
val predicate eq (x y: elt)
ensures { result <-> x = y }
(* note: we avoid the use of an existential quantifier in the invariant *)
let list_member (x : ref (list elt)) (y: elt) (z: ref int)
ensures { !z=1 <-> mem y (old !x) }
= z := 0;
while not (is_nil !x) do
invariant { length !x <= length (old !x) /\
(mem y !x -> mem y (old !x)) /\
(!z=1 /\ mem y (old !x) \/
!z=0 /\ (mem y (old !x) -> mem y !x)) }
variant { !x }
if eq y (head !x) then z := 1;
x := tail !x
done
end