Files
why3/examples/random_access_list.mlw
Mário dccef8ab6c No more let empty () = ... in examples.
We use now the more idiomatic `let empty = ...` expression.

TODO: port `queens_bv` example. After applying this change to the code,
I was able to reproduce the proof.
2020-09-10 18:13:14 +01:00

294 lines
7.9 KiB
Plaintext

(** Random Access Lists.
(Okasaki, "Purely Functional Data Structures", 10.1.2.)
The code below uses polymorphic recursion (both in the logic
and in the programs).
Author: Jean-Christophe Filliâtre (CNRS)
*)
module RandomAccessList
use int.Int
use int.ComputerDivision
use list.List
use list.Length
use list.Nth
use option.Option
type ral 'a =
| Empty
| Zero (ral ('a, 'a))
| One 'a (ral ('a, 'a))
function flatten (l: list ('a, 'a)) : list 'a =
match l with
| Nil -> Nil
| Cons (x, y) l1 -> Cons x (Cons y (flatten l1))
end
let rec lemma length_flatten (l:list ('a, 'a))
ensures { length (flatten l) = 2 * length l }
variant { l }
=
match l with
| Cons (_,_) q -> length_flatten q
| Nil -> ()
end
function elements (l: ral 'a) : list 'a =
match l with
| Empty -> Nil
| Zero l1 -> flatten (elements l1)
| One x l1 -> Cons x (flatten (elements l1))
end
let rec size (l: ral 'a) : int
variant { l }
ensures { result = length (elements l) }
=
match l with
| Empty -> 0
| Zero l1 -> 2 * size l1
| One _ l1 -> 1 + 2 * size l1
end
let rec cons (x: 'a) (l: ral 'a) : ral 'a
variant { l }
ensures { elements result = Cons x (elements l) }
=
match l with
| Empty -> One x Empty
| Zero l1 -> One x l1
| One y l1 -> Zero (cons (x, y) l1)
end
let rec lemma nth_flatten (i: int) (l: list ('a, 'a))
requires { 0 <= i < length l }
variant { l }
ensures { match nth i l with
| None -> false
| Some (x0, x1) -> Some x0 = nth (2 * i) (flatten l) /\
Some x1 = nth (2 * i + 1) (flatten l) end }
=
match l with
| Nil -> ()
| Cons _ r -> if i > 0 then nth_flatten (i-1) r
end
let rec lookup (i: int) (l: ral 'a) : 'a
requires { 0 <= i < length (elements l) }
variant { i, l }
ensures { nth i (elements l) = Some result }
=
match l with
| Empty -> absurd
| One x l1 -> if i = 0 then x else lookup (i-1) (Zero l1)
| Zero l1 -> let (x0, x1) = lookup (div i 2) l1 in
if mod i 2 = 0 then x0 else x1
end
let rec tail (l: ral 'a) : ral 'a
requires { elements l <> Nil }
variant { l }
ensures { match elements l with
| Nil -> false
| Cons _ l -> elements result = l
end }
=
match l with
| Empty -> absurd
| One _ l1 -> Zero l1
| Zero l1 -> let (_, x1) = lookup 0 l1 in One x1 (tail l1)
end
let rec update (i: int) (y: 'a) (l: ral 'a) : ral 'a
requires { 0 <= i < length (elements l) }
variant { i, l}
ensures { nth i (elements result) = Some y}
ensures { forall j. 0 <= j < length (elements l) ->
j <> i -> nth j (elements result) = nth j (elements l) }
ensures { length (elements result) = length (elements l) }
ensures { match result, l with
| One _ _, One _ _ | Zero _, Zero _ -> true
| _ -> false
end }
=
match l with
| Empty -> absurd
| One x l1 -> if i = 0 then One y l1 else
match update (i-1) y (Zero l1) with
| Empty | One _ _ -> absurd
| Zero l1 -> One x l1
end
| Zero l1 ->
let (x0, x1) = lookup (div i 2) l1 in
let l1' =
update (div i 2) (if mod i 2 = 0 then (y,x1) else (x0,y)) l1 in
assert { forall j. 0 <= j < length (elements l) -> j <> i ->
match nth (div j 2) (elements l1) with
| None -> false
| Some (x0,_) -> Some x0 = nth (2 * (div j 2)) (elements l)
end
&& nth j (elements l) = nth j (elements (Zero l1')) };
Zero l1'
end
end
(** A straightforward encapsulation with a list ghost model
(in anticipation of module refinement) *)
module RAL
use int.Int
use list.List
use list.Length
use option.Option
use list.Nth
use RandomAccessList
type t 'a = { r: ral 'a; ghost l: list 'a }
invariant { l = elements r }
let constant empty : t 'a = { r = Empty; l = Nil }
ensures { result.l = Nil }
let size (t: t 'a) : int
ensures { result = length t.l }
=
size t.r
let cons (x: 'a) (s: t 'a) : t 'a
ensures { result.l = Cons x s.l }
=
{ r = cons x s.r; l = Cons x s.l }
let lookup (i: int) (s: t 'a) : 'a
requires { 0 <= i < length s.l }
ensures { Some result = nth i s.l }
=
lookup i s.r
end
(** Model using sequences instead of lists *)
module RandomAccessListWithSeq
use int.Int
use int.ComputerDivision
use seq.Seq
type ral 'a =
| Empty
| Zero (ral ('a, 'a))
| One 'a (ral ('a, 'a))
function flatten (s: seq ('a, 'a)) : seq 'a =
create (2 * length s)
(fun i -> let (x0, x1) = s[div i 2] in
if mod i 2 = 0 then x0 else x1)
lemma cons_flatten : forall x y :'a,s:seq ('a,'a).
let a = flatten (cons (x,y) s) in
let b = cons x (cons y (flatten s)) in
a = b by a == b by forall i. 0 <= i < a.length -> a[i] = b[i]
by (i <= 1 so (cons (x,y) s)[div i 2] = (x,y))
\/ (i >= 2 so (cons (x,y) s)[div i 2] = s[div (i-2) 2]
)
function elements (l: ral 'a) : seq 'a =
match l with
| Empty -> empty
| Zero l1 -> flatten (elements l1)
| One x l1 -> cons x (flatten (elements l1))
end
let rec size (l: ral 'a) : int
variant { l }
ensures { result = length (elements l) }
=
match l with
| Empty -> 0
| Zero l1 -> 2 * size l1
| One _ l1 -> 1 + 2 * size l1
end
let rec cons (x: 'a) (l: ral 'a) : ral 'a
variant { l }
ensures { elements result == cons x (elements l) }
=
match l with
| Empty -> One x Empty
| Zero l1 -> One x l1
| One y l1 -> Zero (cons (x, y) l1)
end
let rec lookup (i: int) (l: ral 'a) : 'a
requires { 0 <= i < length (elements l) }
variant { i, l }
ensures { (elements l)[i] = result }
=
match l with
| Empty -> absurd
| One x l1 -> if i = 0 then x else lookup (i-1) (Zero l1)
| Zero l1 -> let (x0, x1) = lookup (div i 2) l1 in
if mod i 2 = 0 then x0 else x1
end
let rec tail (l: ral 'a) : ral 'a
requires { 0 < length (elements l) }
variant { l }
ensures { elements result == (elements l)[1..] }
=
match l with
| Empty -> absurd
| One _ l1 -> Zero l1
| Zero l1 -> let (_, x1) as p = lookup 0 l1 in
let tl = tail l1 in
assert { elements l1 == cons p (elements tl) };
One x1 tl
end
(** update in O(log n)
for this, we need to pass a function that will update the element
when we find it *)
function setf (s: seq 'a) (i: int) (f: 'a -> 'a) : seq 'a =
set s i (f s[i])
let function aux (i: int) (f: 'a -> 'a) : ('a, 'a) -> ('a, 'a) =
fun z -> let (x,y) = z in if mod i 2 = 0 then (f x, y) else (x, f y)
let rec fupdate (f: 'a -> 'a) (i: int) (l: ral 'a) : ral 'a
requires { 0 <= i < length (elements l) }
variant { i, l }
ensures { elements result == setf (elements l) i f }
=
match l with
| Empty -> absurd
| One x l1 -> if i = 0 then One (f x) l1 else
cons x (fupdate f (i-1) (Zero l1))
| Zero l1 ->
let ul1 = fupdate (aux i f) (div i 2) l1 in
let res = Zero ul1 in
assert { forall j. 0 <= j < length (elements res) ->
(elements res)[j] = (setf (elements l) i f)[j]
by div j 2 <> div i 2 ->
(elements ul1)[div j 2] = (elements l1)[div j 2]
};
res
end
let function f (y: 'a) : 'a -> 'a = fun _ -> y
let update (i: int) (y: 'a) (l: ral 'a) : ral 'a
requires { 0 <= i < length (elements l) }
ensures { elements result == set (elements l) i y}
=
fupdate (f y) i l
end