Files
why3/examples/prover/Firstorder_tableau_impl.mlw
2018-06-15 16:45:58 +02:00

1822 lines
80 KiB
Plaintext

module Types
use option.Option
use int.Int
use Nat.Nat
use Functions.Func
use OptionFuncs.Funcs
use Sum.Sum
use Firstorder_symbol_spec.Spec
use Firstorder_symbol_impl.Types
use Firstorder_symbol_impl.Logic
use Firstorder_symbol_impl.Impl
use Firstorder_term_spec.Spec
use Firstorder_term_impl.Types
use Firstorder_term_impl.Logic
use Firstorder_term_impl.Impl
use Firstorder_formula_spec.Spec
use Firstorder_formula_impl.Types
use Firstorder_formula_impl.Logic
use Firstorder_formula_impl.Impl
use Firstorder_formula_list_spec.Spec
use Firstorder_formula_list_impl.Types
use Firstorder_formula_list_impl.Logic
use Firstorder_formula_list_impl.Impl
use Firstorder_tableau_spec.Spec
type nl_tableau 'b0 'b1 =
| NL_Root
| NL_Node (nl_tableau 'b0 'b1) (nl_fo_formula 'b0 'b1)
(nl_fo_formula_list 'b0 'b1)
type nlimpl_tableau =
{ nlrepr_tableau_field : nl_tableau int int ;
nlfree_var_symbol_set_abstraction_tableau_field : int ;
nlfree_var_fo_term_set_abstraction_tableau_field : int ;
ghost model_tableau_field : tableau int int ;
}
type cons_tableau = | NLC_Root
| NLC_Node (nlimpl_tableau) (nlimpl_fo_formula) (nlimpl_fo_formula_list)
end
module Logic
use option.Option
use int.Int
use Nat.Nat
use Functions.Func
use OptionFuncs.Funcs
use Sum.Sum
use Firstorder_symbol_spec.Spec
use Firstorder_symbol_impl.Types
use Firstorder_symbol_impl.Logic
use Firstorder_symbol_impl.Impl
use Firstorder_term_spec.Spec
use Firstorder_term_impl.Types
use Firstorder_term_impl.Logic
use Firstorder_term_impl.Impl
use Firstorder_formula_spec.Spec
use Firstorder_formula_impl.Types
use Firstorder_formula_impl.Logic
use Firstorder_formula_impl.Impl
use Firstorder_formula_list_spec.Spec
use Firstorder_formula_list_impl.Types
use Firstorder_formula_list_impl.Logic
use Firstorder_formula_list_impl.Impl
use Firstorder_tableau_spec.Spec
use Types
function nat_nlsize_tableau (t:nl_tableau 'b0 'b1) : nat =
match t with | NL_Root -> let s = one_nat in s
| NL_Node v0 v1 v2 ->
let s = one_nat in
let s = add_nat (nat_nlsize_fo_formula_list v2) s in
let s = add_nat (nat_nlsize_fo_formula v1) s in
let s = add_nat (nat_nlsize_tableau v0) s in s
end
with nlsize_tableau (t:nl_tableau 'b0 'b1) : int =
match t with | NL_Root -> let s = 1 in s
| NL_Node v0 v1 v2 ->
let s = 1 in let s = nlsize_fo_formula_list v2 + s in
let s = nlsize_fo_formula v1 + s in let s = nlsize_tableau v0 +
s in s
end
let rec lemma nlsize_positive_lemma_tableau (t:nl_tableau 'b0 'b1) : unit
ensures { nlsize_tableau t > 0 }
variant { nat_to_int (nat_nlsize_tableau t) } =
match t with | NL_Root -> ()
| NL_Node v0 v1 v2 ->
nlsize_positive_lemma_tableau v0 ;
nlsize_positive_lemma_fo_formula v1 ;
nlsize_positive_lemma_fo_formula_list v2 ; ()
end
function nlmodel_tableau (t:nl_tableau 'b0 'b1) (fr0:'b0 -> (symbol 'c0))
(bnd0: int -> (symbol 'c0)) (fr1:'b1 -> (fo_term 'c0 'c1))
(bnd1: int -> (fo_term 'c0 'c1)) : tableau 'c0 'c1 =
match t with | NL_Root -> Root
| NL_Node v0 v1 v2 ->
Node
(nlmodel_tableau v0 ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(nlmodel_fo_formula v1 ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(nlmodel_fo_formula_list v2 ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
end
let rec lemma nlmodel_subst_commutation_lemma_tableau
(t:nl_tableau 'b0 'b1) (fr0:'b0 -> (symbol 'c0))
(bnd0: int -> (symbol 'c0)) (s0:'c0 -> (symbol 'd0))
(fr1:'b1 -> (fo_term 'c0 'c1)) (bnd1: int -> (fo_term 'c0 'c1))
(s1:'c1 -> (fo_term 'd0 'd1)) : unit
ensures {
nlmodel_tableau t (subst_compose_symbol fr0 s0)
(subst_compose_symbol bnd0 s0) (subst_compose_fo_term fr1 s0 s1)
(subst_compose_fo_term bnd1 s0 s1)
= subst_tableau (nlmodel_tableau t fr0 bnd0 fr1 bnd1) s0 s1 }
variant { nlsize_tableau t } =
match t with | NL_Root -> ()
| NL_Node v0 v1 v2 ->
nlmodel_subst_commutation_lemma_tableau v0
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_symbol s0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity))
((rename_subst_fo_term s1 identity identity)) ;
assert {
subst_compose_symbol (rename_subst_symbol fr0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol fr0 s0) identity) } ;
assert {
subst_compose_symbol (rename_subst_symbol bnd0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol bnd0 s0) identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term fr1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term fr1 s0 s1) identity
identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term bnd1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term bnd1 s0 s1)
identity identity)
} ;
nlmodel_subst_commutation_lemma_fo_formula v1
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_symbol s0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity))
((rename_subst_fo_term s1 identity identity)) ;
assert {
subst_compose_symbol (rename_subst_symbol fr0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol fr0 s0) identity) } ;
assert {
subst_compose_symbol (rename_subst_symbol bnd0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol bnd0 s0) identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term fr1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term fr1 s0 s1) identity
identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term bnd1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term bnd1 s0 s1)
identity identity)
} ;
nlmodel_subst_commutation_lemma_fo_formula_list v2
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_symbol s0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity))
((rename_subst_fo_term s1 identity identity)) ;
assert {
subst_compose_symbol (rename_subst_symbol fr0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol fr0 s0) identity) } ;
assert {
subst_compose_symbol (rename_subst_symbol bnd0 identity)
((rename_subst_symbol s0 identity))
= (rename_subst_symbol (subst_compose_symbol bnd0 s0) identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term fr1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term fr1 s0 s1) identity
identity)
} ;
assert {
subst_compose_fo_term
(rename_subst_fo_term bnd1 identity identity)
((rename_subst_symbol s0 identity))
((rename_subst_fo_term s1 identity identity))
=
(rename_subst_fo_term (subst_compose_fo_term bnd1 s0 s1)
identity identity)
} ;
()
end
let lemma nlmodel_rename_commutation_lemma_tableau (t:nl_tableau 'b0 'b1)
(fr0:'b0 -> (symbol 'c0)) (bnd0: int -> (symbol 'c0)) (s0:'c0 -> 'd0)
(fr1:'b1 -> (fo_term 'c0 'c1)) (bnd1: int -> (fo_term 'c0 'c1))
(s1:'c1 -> 'd1) : unit
ensures {
nlmodel_tableau t (rename_subst_symbol fr0 s0)
(rename_subst_symbol bnd0 s0) (rename_subst_fo_term fr1 s0 s1)
(rename_subst_fo_term bnd1 s0 s1)
= rename_tableau (nlmodel_tableau t fr0 bnd0 fr1 bnd1) s0 s1 }
=
nlmodel_subst_commutation_lemma_tableau t fr0 bnd0
(subst_of_rename_symbol s0) fr1 bnd1 (subst_of_rename_fo_term s1)
predicate correct_indexes_tableau (t:nl_tableau 'b0 'b1) =
match t with | NL_Root -> true
| NL_Node v0 v1 v2 ->
correct_indexes_tableau v0 /\ correct_indexes_fo_formula v1 /\
correct_indexes_fo_formula_list v2
end
function bound_depth_of_symbol_in_tableau (t:nl_tableau 'b0 'b1) : int =
match t with | NL_Root -> 0
| NL_Node v0 v1 v2 ->
let b = bound_depth_of_symbol_in_tableau v0 in let a = b in
let b = bound_depth_of_symbol_in_fo_formula v1 in
let a = if a > b then a else b in
let b = bound_depth_of_symbol_in_fo_formula_list v2 in
let a = if a > b then a else b in a
end
with bound_depth_of_fo_term_in_tableau (t:nl_tableau 'b0 'b1) : int =
match t with | NL_Root -> 0
| NL_Node v0 v1 v2 ->
let b = bound_depth_of_fo_term_in_tableau v0 in let a = b in
let b = bound_depth_of_fo_term_in_fo_formula v1 in
let a = if a > b then a else b in
let b = bound_depth_of_fo_term_in_fo_formula_list v2 in
let a = if a > b then a else b in a
end
let rec lemma bound_depth_of_symbol_in_tableau_nonnegative
(t:nl_tableau 'b0 'b1) : unit requires { correct_indexes_tableau t }
ensures { bound_depth_of_symbol_in_tableau t >= 0 }
variant { nlsize_tableau t } =
match t with | NL_Root -> ()
| NL_Node v0 v1 v2 ->
bound_depth_of_symbol_in_tableau_nonnegative v0 ;
bound_depth_of_symbol_in_fo_formula_nonnegative v1 ;
bound_depth_of_symbol_in_fo_formula_list_nonnegative v2 ; ()
end
with lemma bound_depth_of_fo_term_in_tableau_nonnegative
(t:nl_tableau 'b0 'b1) : unit requires { correct_indexes_tableau t }
ensures { bound_depth_of_fo_term_in_tableau t >= 0 }
variant { nlsize_tableau t } =
match t with | NL_Root -> ()
| NL_Node v0 v1 v2 ->
bound_depth_of_fo_term_in_tableau_nonnegative v0 ;
bound_depth_of_fo_term_in_fo_formula_nonnegative v1 ;
bound_depth_of_fo_term_in_fo_formula_list_nonnegative v2 ; ()
end
let rec lemma model_equal_tableau (t:nl_tableau 'b0 'b1)
(fr10: 'b0 -> (symbol 'c0)) (fr20: 'b0 -> (symbol 'c0))
(bnd10: int -> (symbol 'c0)) (bnd20: int -> (symbol 'c0))
(fr11: 'b1 -> (fo_term 'c0 'c1)) (fr21: 'b1 -> (fo_term 'c0 'c1))
(bnd11: int -> (fo_term 'c0 'c1)) (bnd21: int -> (fo_term 'c0 'c1)) :
unit
requires {
forall i:int. 0 <= i < bound_depth_of_symbol_in_tableau t -> bnd10 i =
bnd20 i
}
requires { fr10 = fr20 }
requires {
forall i:int. 0 <= i < bound_depth_of_fo_term_in_tableau t -> bnd11 i
= bnd21 i
}
requires { fr11 = fr21 } requires { correct_indexes_tableau t }
ensures { nlmodel_tableau t fr10 bnd10 fr11 bnd11 =
nlmodel_tableau t fr20 bnd20 fr21 bnd21 }
variant { nlsize_tableau t } =
match t with | NL_Root -> ()
| NL_Node v0 v1 v2 ->
model_equal_tableau v0 ((rename_subst_symbol fr10 identity))
((rename_subst_symbol fr20 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr11 identity identity))
((rename_subst_fo_term fr21 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_fo_term bnd21 identity identity)) ;
model_equal_fo_formula v1 ((rename_subst_symbol fr10 identity))
((rename_subst_symbol fr20 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr11 identity identity))
((rename_subst_fo_term fr21 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_fo_term bnd21 identity identity)) ;
model_equal_fo_formula_list v2
((rename_subst_symbol fr10 identity))
((rename_subst_symbol fr20 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr11 identity identity))
((rename_subst_fo_term fr21 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_fo_term bnd21 identity identity)) ;
()
end
predicate nlimpl_tableau_ok (t:nlimpl_tableau) =
nlmodel_tableau t.nlrepr_tableau_field subst_id_symbol
(const (Var_symbol ((-1)))) subst_id_fo_term
(const (Var_fo_term ((-1)))) = t.model_tableau_field
/\ correct_indexes_tableau t.nlrepr_tableau_field /\
bound_depth_of_symbol_in_tableau t.nlrepr_tableau_field = 0 /\
bound_depth_of_fo_term_in_tableau t.nlrepr_tableau_field = 0 /\
(forall x:int. is_symbol_free_var_in_tableau x t.model_tableau_field ->
(x) < (t.nlfree_var_symbol_set_abstraction_tableau_field))
/\
(forall x:int. is_fo_term_free_var_in_tableau x t.model_tableau_field ->
(x) < (t.nlfree_var_fo_term_set_abstraction_tableau_field))
predicate cons_ok_tableau (c:cons_tableau) =
match c with | NLC_Root -> true
| NLC_Node v0 v1 v2 -> nlimpl_tableau_ok v0 /\ nlimpl_fo_formula_ok v1
/\ nlimpl_fo_formula_list_ok v2
end
predicate cons_rel_tableau (c:cons_tableau) (t:nlimpl_tableau) =
match c with | NLC_Root -> t.model_tableau_field = Root
| NLC_Node v0 v1 v2 -> t.model_tableau_field =
Node (rename_tableau v0.model_tableau_field identity identity)
(rename_fo_formula v1.model_fo_formula_field identity identity)
(rename_fo_formula_list v2.model_fo_formula_list_field identity
identity)
end
predicate cons_open_rel_tableau (c:cons_tableau) (t:nlimpl_tableau) =
match c with
| NLC_Root ->
match t.model_tableau_field with | Root -> true
| Node w0 w1 w2 -> false
end
| NLC_Node v0 v1 v2 ->
match t.model_tableau_field with | Root -> false
| Node w0 w1 w2 ->
v0.model_tableau_field = (rename_tableau w0 identity identity) /\
v1.model_fo_formula_field =
(rename_fo_formula w1 identity identity)
/\
v2.model_fo_formula_list_field =
(rename_fo_formula_list w2 identity identity)
end
end
end
module Impl
use option.Option
use int.Int
use Nat.Nat
use Functions.Func
use OptionFuncs.Funcs
use Sum.Sum
use Firstorder_symbol_spec.Spec
use Firstorder_symbol_impl.Types
use Firstorder_symbol_impl.Logic
use Firstorder_symbol_impl.Impl
use Firstorder_term_spec.Spec
use Firstorder_term_impl.Types
use Firstorder_term_impl.Logic
use Firstorder_term_impl.Impl
use Firstorder_formula_spec.Spec
use Firstorder_formula_impl.Types
use Firstorder_formula_impl.Logic
use Firstorder_formula_impl.Impl
use Firstorder_formula_list_spec.Spec
use Firstorder_formula_list_impl.Types
use Firstorder_formula_list_impl.Logic
use Firstorder_formula_list_impl.Impl
use Firstorder_tableau_spec.Spec
use Types
use Logic
let rec bind_var_symbol_in_tableau (t:nl_tableau int int) (x:int) (i:int)
(ghost fr0: int -> (symbol 'b0)) (ghost bnd0: int -> (symbol 'b0))
(ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd1: int -> (fo_term 'b0 'b1)) : nl_tableau int int
requires { correct_indexes_tableau t }
requires { bound_depth_of_symbol_in_tableau t <= i }
variant { nlsize_tableau t }
ensures { bound_depth_of_symbol_in_tableau result <= i + 1 }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_fo_term_in_tableau t =
bound_depth_of_fo_term_in_tableau result }
ensures { nlmodel_tableau result fr0 bnd0 fr1 bnd1 =
nlmodel_tableau t (update fr0 x (bnd0 i)) bnd0 fr1 bnd1 }
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert { (rename_symbol (bnd0 i) identity) =
(eval ((rename_subst_symbol bnd0 identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_symbol (update fr0 x (bnd0 i)) identity))
((update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (bnd0 i) identity)))
};
assert { (rename_subst_symbol (update fr0 x (bnd0 i)) identity) =
(update ((rename_subst_symbol fr0 identity)) x
(eval ((rename_subst_symbol bnd0 identity)) (i+0)))
};
assert { (rename_symbol (bnd0 i) identity) =
(eval ((rename_subst_symbol bnd0 identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_symbol (update fr0 x (bnd0 i)) identity))
((update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (bnd0 i) identity)))
};
assert { (rename_subst_symbol (update fr0 x (bnd0 i)) identity) =
(update ((rename_subst_symbol fr0 identity)) x
(eval ((rename_subst_symbol bnd0 identity)) (i+0)))
};
assert { (rename_symbol (bnd0 i) identity) =
(eval ((rename_subst_symbol bnd0 identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_symbol (update fr0 x (bnd0 i)) identity))
((update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (bnd0 i) identity)))
};
assert { (rename_subst_symbol (update fr0 x (bnd0 i)) identity) =
(update ((rename_subst_symbol fr0 identity)) x
(eval ((rename_subst_symbol bnd0 identity)) (i+0)))
};
NL_Node
(bind_var_symbol_in_tableau v0 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(bind_var_symbol_in_fo_formula v1 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(bind_var_symbol_in_fo_formula_list v2 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
end
with bind_var_fo_term_in_tableau (t:nl_tableau int int) (x:int) (i:int)
(ghost fr0: int -> (symbol 'b0)) (ghost bnd0: int -> (symbol 'b0))
(ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd1: int -> (fo_term 'b0 'b1)) : nl_tableau int int
requires { correct_indexes_tableau t }
requires { bound_depth_of_fo_term_in_tableau t <= i }
variant { nlsize_tableau t }
ensures { bound_depth_of_fo_term_in_tableau result <= i + 1 }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_symbol_in_tableau t =
bound_depth_of_symbol_in_tableau result }
ensures { nlmodel_tableau result fr0 bnd0 fr1 bnd1 =
nlmodel_tableau t fr0 bnd0 (update fr1 x (bnd1 i)) bnd1 }
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert { (rename_fo_term (bnd1 i) identity identity) =
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_fo_term (update fr1 x (bnd1 i)) identity
identity))
((update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (bnd1 i) identity identity)))
};
assert {
(rename_subst_fo_term (update fr1 x (bnd1 i)) identity identity)
=
(update ((rename_subst_fo_term fr1 identity identity)) x
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)))
};
assert { (rename_fo_term (bnd1 i) identity identity) =
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_fo_term (update fr1 x (bnd1 i)) identity
identity))
((update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (bnd1 i) identity identity)))
};
assert {
(rename_subst_fo_term (update fr1 x (bnd1 i)) identity identity)
=
(update ((rename_subst_fo_term fr1 identity identity)) x
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)))
};
assert { (rename_fo_term (bnd1 i) identity identity) =
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)) };
assert {
extensionalEqual
((rename_subst_fo_term (update fr1 x (bnd1 i)) identity
identity))
((update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (bnd1 i) identity identity)))
};
assert {
(rename_subst_fo_term (update fr1 x (bnd1 i)) identity identity)
=
(update ((rename_subst_fo_term fr1 identity identity)) x
(eval ((rename_subst_fo_term bnd1 identity identity)) (i+0)))
};
NL_Node
(bind_var_fo_term_in_tableau v0 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(bind_var_fo_term_in_fo_formula v1 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
(bind_var_fo_term_in_fo_formula_list v2 x (i+0)
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd0 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd1 identity identity)))
end
let rec unbind_var_symbol_in_tableau (t:nl_tableau int int) (i:int)
(x:nl_symbol int) (ghost fr0: int -> (symbol 'b0))
(ghost bnd10: int -> (symbol 'b0)) (ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd11: int -> (fo_term 'b0 'b1))
(ghost bnd20: int -> (symbol 'b0)) : nl_tableau int int
requires { i >= 0 } requires { correct_indexes_tableau t }
requires { bound_depth_of_symbol_in_tableau t <= i + 1 }
requires { correct_indexes_symbol x }
requires { bound_depth_of_symbol_in_symbol x = 0 }
variant { nlsize_tableau t }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_symbol_in_tableau result <= i }
ensures { bound_depth_of_fo_term_in_tableau result =
bound_depth_of_fo_term_in_tableau t }
ensures { nlmodel_tableau result fr0 bnd10 fr1 bnd11 =
nlmodel_tableau t fr0 (update bnd10 i (nlmodel_symbol x fr0 bnd20)) fr1
bnd11
}
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert { rename_symbol (nlmodel_symbol x fr0 bnd20) identity =
nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity))
(update ((rename_subst_symbol bnd10 identity)) (i+0)
(rename_symbol (nlmodel_symbol x fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity)
=
update ((rename_subst_symbol bnd10 identity)) (i+0)
(nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
assert { rename_symbol (nlmodel_symbol x fr0 bnd20) identity =
nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity))
(update ((rename_subst_symbol bnd10 identity)) (i+0)
(rename_symbol (nlmodel_symbol x fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity)
=
update ((rename_subst_symbol bnd10 identity)) (i+0)
(nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
assert { rename_symbol (nlmodel_symbol x fr0 bnd20) identity =
nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity))
(update ((rename_subst_symbol bnd10 identity)) (i+0)
(rename_symbol (nlmodel_symbol x fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol
(update bnd10 i (nlmodel_symbol x fr0 bnd20)) identity)
=
update ((rename_subst_symbol bnd10 identity)) (i+0)
(nlmodel_symbol x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
NL_Node
(unbind_var_symbol_in_tableau v0 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
(unbind_var_symbol_in_fo_formula v1 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
(unbind_var_symbol_in_fo_formula_list v2 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
end
with unbind_var_fo_term_in_tableau (t:nl_tableau int int) (i:int)
(x:nl_fo_term int int) (ghost fr0: int -> (symbol 'b0))
(ghost bnd10: int -> (symbol 'b0)) (ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd11: int -> (fo_term 'b0 'b1))
(ghost bnd20: int -> (symbol 'b0))
(ghost bnd21: int -> (fo_term 'b0 'b1)) : nl_tableau int int
requires { i >= 0 } requires { correct_indexes_tableau t }
requires { bound_depth_of_fo_term_in_tableau t <= i + 1 }
requires { correct_indexes_fo_term x }
requires { bound_depth_of_symbol_in_fo_term x = 0 }
requires { bound_depth_of_fo_term_in_fo_term x = 0 }
variant { nlsize_tableau t }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_fo_term_in_tableau result <= i }
ensures { bound_depth_of_symbol_in_tableau result =
bound_depth_of_symbol_in_tableau t }
ensures { nlmodel_tableau result fr0 bnd10 fr1 bnd11 =
nlmodel_tableau t fr0 bnd10 fr1
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
}
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert {
rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity)
=
update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
assert {
rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity)
=
update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
assert {
rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(rename_fo_term (nlmodel_fo_term x fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update bnd11 i (nlmodel_fo_term x fr0 bnd20 fr1 bnd21))
identity identity)
=
update ((rename_subst_fo_term bnd11 identity identity)) (i+0)
(nlmodel_fo_term x ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
NL_Node
(unbind_var_fo_term_in_tableau v0 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
(unbind_var_fo_term_in_fo_formula v1 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
(unbind_var_fo_term_in_fo_formula_list v2 (i+0) x
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
end
let rec subst_base_symbol_in_tableau (t:nl_tableau int int) (x:int)
(u:nl_symbol int) (ghost fr0: int -> (symbol 'b0))
(ghost bnd10: int -> (symbol 'b0)) (ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd11: int -> (fo_term 'b0 'b1))
(ghost bnd20: int -> (symbol 'b0)) : nl_tableau int int
requires { correct_indexes_tableau t }
requires { correct_indexes_symbol u }
requires { bound_depth_of_symbol_in_symbol u = 0 }
variant { nlsize_tableau t }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_symbol_in_tableau result =
bound_depth_of_symbol_in_tableau t }
ensures { bound_depth_of_fo_term_in_tableau result =
bound_depth_of_fo_term_in_tableau t }
ensures { nlmodel_tableau result fr0 bnd10 fr1 bnd11 =
nlmodel_tableau t (update fr0 x (nlmodel_symbol u fr0 bnd20)) bnd10 fr1
bnd11
}
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert { rename_symbol (nlmodel_symbol u fr0 bnd20) identity =
nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update fr0 x (nlmodel_symbol u fr0 bnd20)) identity))
(update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (nlmodel_symbol u fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol (update fr0 x (nlmodel_symbol u fr0 bnd20))
identity)
=
update ((rename_subst_symbol fr0 identity)) x
(nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
assert { rename_symbol (nlmodel_symbol u fr0 bnd20) identity =
nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update fr0 x (nlmodel_symbol u fr0 bnd20)) identity))
(update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (nlmodel_symbol u fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol (update fr0 x (nlmodel_symbol u fr0 bnd20))
identity)
=
update ((rename_subst_symbol fr0 identity)) x
(nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
assert { rename_symbol (nlmodel_symbol u fr0 bnd20) identity =
nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
} ;
assert {
extensionalEqual
((rename_subst_symbol
(update fr0 x (nlmodel_symbol u fr0 bnd20)) identity))
(update ((rename_subst_symbol fr0 identity)) x
(rename_symbol (nlmodel_symbol u fr0 bnd20) identity))
} ;
assert {
(rename_subst_symbol (update fr0 x (nlmodel_symbol u fr0 bnd20))
identity)
=
update ((rename_subst_symbol fr0 identity)) x
(nlmodel_symbol u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity)))
} ;
NL_Node
(subst_base_symbol_in_tableau v0 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
(subst_base_symbol_in_fo_formula v1 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
(subst_base_symbol_in_fo_formula_list v2 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity)))
end
with subst_base_fo_term_in_tableau (t:nl_tableau int int) (x:int)
(u:nl_fo_term int int) (ghost fr0: int -> (symbol 'b0))
(ghost bnd10: int -> (symbol 'b0)) (ghost fr1: int -> (fo_term 'b0 'b1))
(ghost bnd11: int -> (fo_term 'b0 'b1))
(ghost bnd20: int -> (symbol 'b0))
(ghost bnd21: int -> (fo_term 'b0 'b1)) : nl_tableau int int
requires { correct_indexes_tableau t }
requires { correct_indexes_fo_term u }
requires { bound_depth_of_symbol_in_fo_term u = 0 }
requires { bound_depth_of_fo_term_in_fo_term u = 0 }
variant { nlsize_tableau t }
ensures { correct_indexes_tableau result }
ensures { bound_depth_of_symbol_in_tableau result =
bound_depth_of_symbol_in_tableau t }
ensures { bound_depth_of_fo_term_in_tableau result =
bound_depth_of_fo_term_in_tableau t }
ensures { nlmodel_tableau result fr0 bnd10 fr1 bnd11 =
nlmodel_tableau t fr0 bnd10
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)) bnd11
}
=
match t with | NL_Root -> NL_Root
| NL_Node v0 v1 v2 ->
assert {
rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)) identity
identity)
=
update ((rename_subst_fo_term fr1 identity identity)) x
(nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
assert {
rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)) identity
identity)
=
update ((rename_subst_fo_term fr1 identity identity)) x
(nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
assert {
rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21) identity
identity
=
nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity))
} ;
assert {
extensionalEqual
((rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21))
identity identity))
(update ((rename_subst_fo_term fr1 identity identity)) x
(rename_fo_term (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)
identity identity))
} ;
assert {
(rename_subst_fo_term
(update fr1 x (nlmodel_fo_term u fr0 bnd20 fr1 bnd21)) identity
identity)
=
update ((rename_subst_fo_term fr1 identity identity)) x
(nlmodel_fo_term u ((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd21 identity identity)))
} ;
NL_Node
(subst_base_fo_term_in_tableau v0 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
(subst_base_fo_term_in_fo_formula v1 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
(subst_base_fo_term_in_fo_formula_list v2 x u
((rename_subst_symbol fr0 identity))
((rename_subst_symbol bnd10 identity))
((rename_subst_fo_term fr1 identity identity))
((rename_subst_fo_term bnd11 identity identity))
((rename_subst_symbol bnd20 identity))
((rename_subst_fo_term bnd21 identity identity)))
end
let construct_tableau (c:cons_tableau) : nlimpl_tableau
requires { cons_ok_tableau c } ensures { nlimpl_tableau_ok result }
ensures { cons_rel_tableau c result }
(*ensures { cons_open_rel_tableau c result }*) =
match c with
| NLC_Root ->
let res =
{ nlrepr_tableau_field = (NL_Root) ;
nlfree_var_symbol_set_abstraction_tableau_field = 0 ;
nlfree_var_fo_term_set_abstraction_tableau_field = 0 ;
model_tableau_field = ghost (Root) ;
}
in
assert {
forall x:int.
is_symbol_free_var_in_tableau x res.model_tableau_field ->
(false) && (x) <
(res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_fo_term_free_var_in_tableau x res.model_tableau_field ->
(false) && (x) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
res
| NLC_Node v0 v1 v2 -> assert { nlimpl_tableau_ok v0 } ;
assert { nlimpl_fo_formula_ok v1 } ;
assert { nlimpl_fo_formula_list_ok v2 } ;
let res =
{
nlrepr_tableau_field =
(NL_Node (let v0 = v0.nlrepr_tableau_field in v0)
(let v1 = v1.nlrepr_fo_formula_field in v1)
(let v2 = v2.nlrepr_fo_formula_list_field in v2)) ;
nlfree_var_symbol_set_abstraction_tableau_field =
(let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } =
if a < b then b else a in
aux
((let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } =
if a < b then b else a in
aux
(v0.nlfree_var_symbol_set_abstraction_tableau_field)
(v1.nlfree_var_symbol_set_abstraction_fo_formula_field)))
(v2.nlfree_var_symbol_set_abstraction_fo_formula_list_field)) ;
nlfree_var_fo_term_set_abstraction_tableau_field =
(let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } =
if a < b then b else a in
aux
((let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } =
if a < b then b else a in
aux
(v0.nlfree_var_fo_term_set_abstraction_tableau_field)
(v1.nlfree_var_fo_term_set_abstraction_fo_formula_field)))
(v2.nlfree_var_fo_term_set_abstraction_fo_formula_list_field)) ;
model_tableau_field = ghost
(Node (rename_tableau v0.model_tableau_field identity identity)
(rename_fo_formula v1.model_fo_formula_field identity
identity)
(rename_fo_formula_list v2.model_fo_formula_list_field
identity identity)) ;
}
in
assert {
forall x:int.
is_symbol_free_var_in_tableau x
(rename_tableau v0.model_tableau_field identity identity)
->
(forall y:int.
(is_symbol_free_var_in_tableau y v0.model_tableau_field /\
eval (identity) y = x) -> x = eval (identity) y && x = y &&
is_symbol_free_var_in_tableau x v0.model_tableau_field)
&& is_symbol_free_var_in_tableau x v0.model_tableau_field && (x)
< (v0.nlfree_var_symbol_set_abstraction_tableau_field) && (x) <
(res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_fo_term_free_var_in_tableau x
(rename_tableau v0.model_tableau_field identity identity)
->
(forall y:int.
(is_fo_term_free_var_in_tableau y v0.model_tableau_field /\
eval (identity) y = x) -> x = eval (identity) y && x = y &&
is_fo_term_free_var_in_tableau x v0.model_tableau_field)
&& is_fo_term_free_var_in_tableau x v0.model_tableau_field && (x)
< (v0.nlfree_var_fo_term_set_abstraction_tableau_field) && (x) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_symbol_free_var_in_fo_formula x
(rename_fo_formula v1.model_fo_formula_field identity identity)
->
(forall y:int.
(is_symbol_free_var_in_fo_formula y v1.model_fo_formula_field
/\ eval (identity) y = x) -> x = eval (identity) y &&
x = y &&
is_symbol_free_var_in_fo_formula x v1.model_fo_formula_field)
&& is_symbol_free_var_in_fo_formula x v1.model_fo_formula_field
&& (x) < (v1.nlfree_var_symbol_set_abstraction_fo_formula_field)
&& (x) < (res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_fo_term_free_var_in_fo_formula x
(rename_fo_formula v1.model_fo_formula_field identity identity)
->
(forall y:int.
(is_fo_term_free_var_in_fo_formula y v1.model_fo_formula_field
/\ eval (identity) y = x) -> x = eval (identity) y &&
x = y &&
is_fo_term_free_var_in_fo_formula x v1.model_fo_formula_field)
&& is_fo_term_free_var_in_fo_formula x v1.model_fo_formula_field
&& (x) < (v1.nlfree_var_fo_term_set_abstraction_fo_formula_field)
&& (x) < (res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_symbol_free_var_in_fo_formula_list x
(rename_fo_formula_list v2.model_fo_formula_list_field identity
identity)
->
(forall y:int.
(is_symbol_free_var_in_fo_formula_list y
v2.model_fo_formula_list_field
/\ eval (identity) y = x) -> x = eval (identity) y &&
x = y &&
is_symbol_free_var_in_fo_formula_list x
v2.model_fo_formula_list_field)
&&
is_symbol_free_var_in_fo_formula_list x
v2.model_fo_formula_list_field
&& (x) <
(v2.nlfree_var_symbol_set_abstraction_fo_formula_list_field) &&
(x) < (res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_fo_term_free_var_in_fo_formula_list x
(rename_fo_formula_list v2.model_fo_formula_list_field identity
identity)
->
(forall y:int.
(is_fo_term_free_var_in_fo_formula_list y
v2.model_fo_formula_list_field
/\ eval (identity) y = x) -> x = eval (identity) y &&
x = y &&
is_fo_term_free_var_in_fo_formula_list x
v2.model_fo_formula_list_field)
&&
is_fo_term_free_var_in_fo_formula_list x
v2.model_fo_formula_list_field
&& (x) <
(v2.nlfree_var_fo_term_set_abstraction_fo_formula_list_field) &&
(x) < (res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_symbol_free_var_in_tableau x res.model_tableau_field ->
(is_symbol_free_var_in_tableau x
(rename_tableau v0.model_tableau_field identity identity) \/
is_symbol_free_var_in_fo_formula x
(rename_fo_formula v1.model_fo_formula_field identity
identity)
\/
is_symbol_free_var_in_fo_formula_list x
(rename_fo_formula_list v2.model_fo_formula_list_field
identity identity))
&& (x) < (res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x:int.
is_fo_term_free_var_in_tableau x res.model_tableau_field ->
(is_fo_term_free_var_in_tableau x
(rename_tableau v0.model_tableau_field identity identity) \/
is_fo_term_free_var_in_fo_formula x
(rename_fo_formula v1.model_fo_formula_field identity
identity)
\/
is_fo_term_free_var_in_fo_formula_list x
(rename_fo_formula_list v2.model_fo_formula_list_field
identity identity))
&& (x) < (res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert {
extensionalEqual (rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity))
} ;
assert { rename_subst_symbol subst_id_symbol identity =
(rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity)
} ;
assert {
extensionalEqual
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity))
} ;
assert { rename_subst_fo_term subst_id_fo_term identity identity =
(rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity)
} ;
model_equal_tableau v0.nlrepr_tableau_field
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (const (Var_symbol (-1))) identity))
(rename_subst_symbol (const (Var_symbol (-1))) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term (const (Var_fo_term (-1))) identity
identity))
(rename_subst_fo_term (const (Var_fo_term (-1))) identity identity) ;
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
assert {
extensionalEqual (rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity))
} ;
assert { rename_subst_symbol subst_id_symbol identity =
(rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity)
} ;
assert {
extensionalEqual
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity))
} ;
assert { rename_subst_fo_term subst_id_fo_term identity identity =
(rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity)
} ;
model_equal_fo_formula v1.nlrepr_fo_formula_field
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (const (Var_symbol (-1))) identity))
(rename_subst_symbol (const (Var_symbol (-1))) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term (const (Var_fo_term (-1))) identity
identity))
(rename_subst_fo_term (const (Var_fo_term (-1))) identity identity) ;
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
assert {
extensionalEqual (rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity))
} ;
assert { rename_subst_symbol subst_id_symbol identity =
(rename_subst_symbol (subst_id_symbol:(int)->(symbol (int)))
identity)
} ;
assert {
extensionalEqual
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity))
} ;
assert { rename_subst_fo_term subst_id_fo_term identity identity =
(rename_subst_fo_term
(subst_id_fo_term:(int)->(fo_term (int) (int))) identity
identity)
} ;
model_equal_fo_formula_list v2.nlrepr_fo_formula_list_field
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol subst_id_symbol identity)
((rename_subst_symbol (const (Var_symbol (-1))) identity))
(rename_subst_symbol (const (Var_symbol (-1))) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
((rename_subst_fo_term (const (Var_fo_term (-1))) identity
identity))
(rename_subst_fo_term (const (Var_fo_term (-1))) identity identity) ;
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
(*assert {
extensionalEqual (rcompose (identity) (identity))
((identity : (int) -> (int)))
} ;
assert { rcompose (identity) (identity) = (identity : (int) -> (int))
} ;*)
res
end
let destruct_tableau (t:nlimpl_tableau) : cons_tableau
requires { nlimpl_tableau_ok t } ensures { cons_ok_tableau result }
ensures { cons_rel_tableau result t }
ensures { cons_open_rel_tableau result t } =
let fv0 = t.nlfree_var_symbol_set_abstraction_tableau_field in
let fv1 = t.nlfree_var_fo_term_set_abstraction_tableau_field in
match t.nlrepr_tableau_field with
| NL_Root ->
assert { t.model_tableau_field = Root } ;
let () =
match t.model_tableau_field with | Root -> ()
| Node x0 x1 x2 -> absurd
end
in let res = NLC_Root in res
| NL_Node v0 v1 v2 ->
assert { t.model_tableau_field =
Node
(nlmodel_tableau v0
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
(nlmodel_fo_formula v1
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
(nlmodel_fo_formula_list v2
(rename_subst_symbol subst_id_symbol identity)
(rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity)
(rename_subst_fo_term subst_id_fo_term identity identity)
(rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
} ;
let (mv0 , mv1 , mv2) =
match t.model_tableau_field with | Root -> absurd
| Node x0 x1 x2 -> (x0 , x1 , x2)
end
in
assert { mv0 =
nlmodel_tableau v0
((rename_subst_symbol subst_id_symbol identity))
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
((rename_subst_fo_term subst_id_fo_term identity identity))
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
} ;
assert { mv1 =
nlmodel_fo_formula v1
((rename_subst_symbol subst_id_symbol identity))
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
((rename_subst_fo_term subst_id_fo_term identity identity))
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
} ;
assert { mv2 =
nlmodel_fo_formula_list v2
((rename_subst_symbol subst_id_symbol identity))
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
((rename_subst_fo_term subst_id_fo_term identity identity))
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
} ;
assert { bound_depth_of_symbol_in_tableau v0 <= 0 } ;
assert {
forall x:int. is_symbol_free_var_in_tableau x mv0 ->
is_symbol_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert { bound_depth_of_fo_term_in_tableau v0 <= 0 } ;
assert {
forall x:int. is_fo_term_free_var_in_tableau x mv0 ->
is_fo_term_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert { bound_depth_of_symbol_in_fo_formula v1 <= 0 } ;
assert {
forall x:int. is_symbol_free_var_in_fo_formula x mv1 ->
is_symbol_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert { bound_depth_of_fo_term_in_fo_formula v1 <= 0 } ;
assert {
forall x:int. is_fo_term_free_var_in_fo_formula x mv1 ->
is_fo_term_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
assert { bound_depth_of_symbol_in_fo_formula_list v2 <= 0 } ;
assert {
forall x:int. is_symbol_free_var_in_fo_formula_list x mv2 ->
is_symbol_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert { bound_depth_of_fo_term_in_fo_formula_list v2 <= 0 } ;
assert {
forall x:int. is_fo_term_free_var_in_fo_formula_list x mv2 ->
is_fo_term_free_var_in_tableau x t.model_tableau_field && (x) <
(t.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
model_equal_tableau v0 subst_id_symbol
(rename_subst_symbol
((rename_subst_symbol subst_id_symbol identity)) (identity)) ((
const (Var_symbol (-1)) : int -> (symbol int)))
(rename_subst_symbol
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
(identity))
subst_id_fo_term
(rename_subst_fo_term
((rename_subst_fo_term subst_id_fo_term identity identity))
(identity) (identity)) ((const (Var_fo_term (-1)) :
int -> (fo_term int int)))
(rename_subst_fo_term
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
(identity) (identity)) ;
model_equal_fo_formula v1 subst_id_symbol
(rename_subst_symbol
((rename_subst_symbol subst_id_symbol identity)) (identity)) ((
const (Var_symbol (-1)) : int -> (symbol int)))
(rename_subst_symbol
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
(identity))
subst_id_fo_term
(rename_subst_fo_term
((rename_subst_fo_term subst_id_fo_term identity identity))
(identity) (identity)) ((const (Var_fo_term (-1)) :
int -> (fo_term int int)))
(rename_subst_fo_term
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
(identity) (identity)) ;
model_equal_fo_formula_list v2 subst_id_symbol
(rename_subst_symbol
((rename_subst_symbol subst_id_symbol identity)) (identity)) ((
const (Var_symbol (-1)) : int -> (symbol int)))
(rename_subst_symbol
((rename_subst_symbol
(const (Var_symbol (-1)) : int -> (symbol int)) identity))
(identity))
subst_id_fo_term
(rename_subst_fo_term
((rename_subst_fo_term subst_id_fo_term identity identity))
(identity) (identity)) ((const (Var_fo_term (-1)) :
int -> (fo_term int int)))
(rename_subst_fo_term
((rename_subst_fo_term
(const (Var_fo_term (-1)) : int -> (fo_term int int))
identity identity))
(identity) (identity)) ;
let ghost mrv0 = rename_tableau mv0 identity identity in
let ghost mrv1 = rename_fo_formula mv1 identity identity in
let ghost mrv2 = rename_fo_formula_list mv2 identity identity in
let resv0 =
{ nlrepr_tableau_field = v0 ;
nlfree_var_symbol_set_abstraction_tableau_field = fv0 ;
nlfree_var_fo_term_set_abstraction_tableau_field = fv1 ;
model_tableau_field = ghost mrv0 ;
}
in
let resv1 =
{ nlrepr_fo_formula_field = v1 ;
nlfree_var_symbol_set_abstraction_fo_formula_field = fv0 ;
nlfree_var_fo_term_set_abstraction_fo_formula_field = fv1 ;
model_fo_formula_field = ghost mrv1 ;
}
in
let resv2 =
{ nlrepr_fo_formula_list_field = v2 ;
nlfree_var_symbol_set_abstraction_fo_formula_list_field = fv0 ;
nlfree_var_fo_term_set_abstraction_fo_formula_list_field =
fv1 ;
model_fo_formula_list_field = ghost mrv2 ;
}
in let res = NLC_Node resv0 resv1 resv2 in
free_var_equivalence_of_rename_tableau mv0 (identity)
(rcompose (identity) (identity)) (identity)
(rcompose (identity) (identity)) ;
free_var_equivalence_of_rename_fo_formula mv1 (identity)
(rcompose (identity) (identity)) (identity)
(rcompose (identity) (identity)) ;
free_var_equivalence_of_rename_fo_formula_list mv2 (identity)
(rcompose (identity) (identity)) (identity)
(rcompose (identity) (identity)) ;
assert {
forall x:int. is_symbol_free_var_in_tableau x mrv0 ->
(forall y:int.
(is_symbol_free_var_in_tableau y mv0 /\ eval (identity) y =
x)
-> x = y &&
is_symbol_free_var_in_tableau x t.model_tableau_field && (x)
< (fv0))
&& (x) < (fv0)
} ;
assert {
forall x:int. is_fo_term_free_var_in_tableau x mrv0 ->
(forall y:int.
(is_fo_term_free_var_in_tableau y mv0 /\ eval (identity) y =
x)
-> x = y &&
is_fo_term_free_var_in_tableau x t.model_tableau_field &&
(x) < (fv1))
&& (x) < (fv1)
} ;
assert {
forall x:int. is_symbol_free_var_in_fo_formula x mrv1 ->
(forall y:int.
(is_symbol_free_var_in_fo_formula y mv1 /\ eval (identity) y
= x)
-> x = y &&
is_symbol_free_var_in_tableau x t.model_tableau_field && (x)
< (fv0))
&& (x) < (fv0)
} ;
assert {
forall x:int. is_fo_term_free_var_in_fo_formula x mrv1 ->
(forall y:int.
(is_fo_term_free_var_in_fo_formula y mv1 /\
eval (identity) y = x)
-> x = y &&
is_fo_term_free_var_in_tableau x t.model_tableau_field &&
(x) < (fv1))
&& (x) < (fv1)
} ;
assert {
forall x:int. is_symbol_free_var_in_fo_formula_list x mrv2 ->
(forall y:int.
(is_symbol_free_var_in_fo_formula_list y mv2 /\
eval (identity) y = x)
-> x = y &&
is_symbol_free_var_in_tableau x t.model_tableau_field && (x)
< (fv0))
&& (x) < (fv0)
} ;
assert {
forall x:int. is_fo_term_free_var_in_fo_formula_list x mrv2 ->
(forall y:int.
(is_fo_term_free_var_in_fo_formula_list y mv2 /\
eval (identity) y = x)
-> x = y &&
is_fo_term_free_var_in_tableau x t.model_tableau_field &&
(x) < (fv1))
&& (x) < (fv1)
} ;
res
end
let nlsubst_symbol_in_tableau (t:nlimpl_tableau) (x:int)
(u:nlimpl_symbol) : nlimpl_tableau requires { nlimpl_tableau_ok t }
requires { nlimpl_symbol_ok u } ensures { nlimpl_tableau_ok result }
ensures { result.model_tableau_field =
subst_tableau t.model_tableau_field
(update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field)
(subst_id_fo_term: (int) -> (fo_term (int) (int)))
}
=
model_equal_tableau t.nlrepr_tableau_field
(subst_compose_symbol subst_id_symbol
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field)))
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field))
(subst_compose_symbol (const (Var_symbol (-1)))
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field)))
((const (Var_symbol (-1))))
(subst_compose_fo_term subst_id_fo_term
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field))
((subst_id_fo_term: (int) -> (fo_term (int) (int)))))
((subst_id_fo_term: (int) -> (fo_term (int) (int))))
(subst_compose_fo_term (const (Var_fo_term (-1)))
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field))
((subst_id_fo_term: (int) -> (fo_term (int) (int)))))
((const (Var_fo_term (-1))));
let res =
{
nlrepr_tableau_field =
subst_base_symbol_in_tableau t.nlrepr_tableau_field x
u.nlrepr_symbol_field (subst_id_symbol)
((const (Var_symbol (-1)))) (subst_id_fo_term)
((const (Var_fo_term (-1)))) ((const (Var_symbol (-1)))) ;
nlfree_var_symbol_set_abstraction_tableau_field =
(let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } = if a < b then b else a
in
aux (t.nlfree_var_symbol_set_abstraction_tableau_field)
(u.nlfree_var_symbol_set_abstraction_symbol_field)) ;
nlfree_var_fo_term_set_abstraction_tableau_field =
t.nlfree_var_fo_term_set_abstraction_tableau_field ;
model_tableau_field = ghost
subst_tableau t.model_tableau_field
(update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field)
(subst_id_fo_term: (int) -> (fo_term (int) (int))) ;
}
in
assert {
forall x2:int. is_symbol_free_var_in_tableau x2 res.model_tableau_field
->
(true /\
(forall y:int.
(is_symbol_free_var_in_tableau y t.model_tableau_field /\
is_symbol_free_var_in_symbol x2
(eval
((update (subst_id_symbol: (int) -> (symbol (int))) x
u.model_symbol_field))
y))
->
((x = y -> (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field))
/\
(x <> y -> x2 = y && (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field)))
&& (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field))
/\
(forall y:int.
(is_fo_term_free_var_in_tableau y t.model_tableau_field /\
is_symbol_free_var_in_fo_term x2
(eval ((subst_id_fo_term: (int) -> (fo_term (int) (int))))
y))
-> false))
&& (x2) < (res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x2:int.
is_fo_term_free_var_in_tableau x2 res.model_tableau_field ->
(true /\
(forall y:int.
(is_fo_term_free_var_in_tableau y t.model_tableau_field /\
is_fo_term_free_var_in_fo_term x2
(eval ((subst_id_fo_term: (int) -> (fo_term (int) (int))))
y))
-> x2 = y && (x2) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field)))
&& (x2) < (res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
res
let nlsubst_fo_term_in_tableau (t:nlimpl_tableau) (x:int)
(u:nlimpl_fo_term) : nlimpl_tableau requires { nlimpl_tableau_ok t }
requires { nlimpl_fo_term_ok u } ensures { nlimpl_tableau_ok result }
ensures { result.model_tableau_field =
subst_tableau t.model_tableau_field
(subst_id_symbol: (int) -> (symbol (int)))
(update (subst_id_fo_term: (int) -> (fo_term (int) (int))) x
u.model_fo_term_field)
}
=
model_equal_tableau t.nlrepr_tableau_field
(subst_compose_symbol subst_id_symbol
((subst_id_symbol: (int) -> (symbol (int)))))
((subst_id_symbol: (int) -> (symbol (int))))
(subst_compose_symbol (const (Var_symbol (-1)))
((subst_id_symbol: (int) -> (symbol (int)))))
((const (Var_symbol (-1))))
(subst_compose_fo_term subst_id_fo_term
((subst_id_symbol: (int) -> (symbol (int))))
((update (subst_id_fo_term: (int) -> (fo_term (int) (int))) x
u.model_fo_term_field)))
((update (subst_id_fo_term: (int) -> (fo_term (int) (int))) x
u.model_fo_term_field))
(subst_compose_fo_term (const (Var_fo_term (-1)))
((subst_id_symbol: (int) -> (symbol (int))))
((update (subst_id_fo_term: (int) -> (fo_term (int) (int))) x
u.model_fo_term_field)))
((const (Var_fo_term (-1))));
let res =
{
nlrepr_tableau_field =
subst_base_fo_term_in_tableau t.nlrepr_tableau_field x
u.nlrepr_fo_term_field (subst_id_symbol)
((const (Var_symbol (-1)))) (subst_id_fo_term)
((const (Var_fo_term (-1)))) ((const (Var_symbol (-1))))
((const (Var_fo_term (-1)))) ;
nlfree_var_symbol_set_abstraction_tableau_field =
(let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } = if a < b then b else a
in
aux (t.nlfree_var_symbol_set_abstraction_tableau_field)
(u.nlfree_var_symbol_set_abstraction_fo_term_field)) ;
nlfree_var_fo_term_set_abstraction_tableau_field =
(let aux (a:int) (b:int) : int
ensures { result >= a /\ result >= b } = if a < b then b else a
in
aux (t.nlfree_var_fo_term_set_abstraction_tableau_field)
(u.nlfree_var_fo_term_set_abstraction_fo_term_field)) ;
model_tableau_field = ghost
subst_tableau t.model_tableau_field
(subst_id_symbol: (int) -> (symbol (int)))
(update (subst_id_fo_term: (int) -> (fo_term (int) (int))) x
u.model_fo_term_field) ;
}
in
assert {
forall x2:int. is_symbol_free_var_in_tableau x2 res.model_tableau_field
->
(true /\
(forall y:int.
(is_symbol_free_var_in_tableau y t.model_tableau_field /\
is_symbol_free_var_in_symbol x2
(eval ((subst_id_symbol: (int) -> (symbol (int)))) y))
-> x2 = y && (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field))
/\
(forall y:int.
(is_fo_term_free_var_in_tableau y t.model_tableau_field /\
is_symbol_free_var_in_fo_term x2
(eval
((update
(subst_id_fo_term: (int) -> (fo_term (int) (int)))
x u.model_fo_term_field))
y))
->
((x = y -> (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field))
/\ (x <> y -> false)) && (x2) <
(res.nlfree_var_symbol_set_abstraction_tableau_field)))
&& (x2) < (res.nlfree_var_symbol_set_abstraction_tableau_field)
} ;
assert {
forall x2:int.
is_fo_term_free_var_in_tableau x2 res.model_tableau_field ->
(true /\
(forall y:int.
(is_fo_term_free_var_in_tableau y t.model_tableau_field /\
is_fo_term_free_var_in_fo_term x2
(eval
((update
(subst_id_fo_term: (int) -> (fo_term (int) (int)))
x u.model_fo_term_field))
y))
->
((x = y -> (x2) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field))
/\
(x <> y -> x2 = y && (x2) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field)))
&& (x2) <
(res.nlfree_var_fo_term_set_abstraction_tableau_field)))
&& (x2) < (res.nlfree_var_fo_term_set_abstraction_tableau_field)
} ;
res
end