Files
why3/examples/numeric/multiplication.mlw
2024-10-01 15:38:42 +02:00

69 lines
2.1 KiB
Plaintext

module MultiplicationSingle
use real.RealInfix
use real.Abs
use ufloat.USingle
use ufloat.USingleLemmas
let multiplication_errors_basic (a b c : usingle)
ensures {
let exact = to_real a *. to_real b *. to_real c in
abs (to_real result -. exact) <=.
(2. +. eps) *. eps *. abs exact +. eta *. (abs (to_real c) *. (1. +. eps) +. 1.)
}
= a **. b **. c
let multiplication_errors (a b c d e f: usingle)
ensures {
let t = 1.0 +. eps in
let t3 = eps +. (eps *. t) in
let t4 = to_real d *. (to_real e *. to_real f) in
let t5 = (to_real a *. to_real b) *. to_real c in
let t6 = ((eta *. abs (to_real d)) *. t) +. eta in
let t7 = ((eta *. abs (to_real c)) *. t) +. eta in
let exact = t5 *. t4 in
abs (to_real result -. exact) <=.
(* Relative part of the error *)
(eps +. (t3 +. t3 +. (t3 *. t3)) *. t) *. abs exact +.
(* Absolute part of the error *)
((t6 +. t6 *. t3) *. abs t5 +.
(t7 +. t7 *. t3) *. abs t4 +. t7 *. t6)
*. t +. eta
}
= (a **. b **. c) **. (d **. (e **. f))
end
module MultiplicationDouble
use real.RealInfix
use real.Abs
use ufloat.UDouble
use ufloat.UDoubleLemmas
let multiplication_errors_basic (a b c : udouble)
ensures {
let exact = to_real a *. to_real b *. to_real c in
abs (to_real result -. exact) <=.
(2. +. eps) *. eps *. abs exact +. eta *. (abs (to_real c) *. (1. +. eps) +. 1.)
}
= a **. b **. c
let multiplication_errors (a b c d e f: udouble)
ensures {
let t = 1.0 +. eps in
let t3 = eps +. (eps *. t) in
let t4 = to_real d *. (to_real e *. to_real f) in
let t5 = (to_real a *. to_real b) *. to_real c in
let t6 = ((eta *. abs (to_real d)) *. t) +. eta in
let t7 = ((eta *. abs (to_real c)) *. t) +. eta in
let exact = t5 *. t4 in
abs (to_real result -. exact) <=.
(* Relative part of the error *)
(eps +. (t3 +. t3 +. (t3 *. t3)) *. t) *. abs exact +.
(* Absolute part of the error *)
((t6 +. t6 *. t3) *. abs t5 +.
(t7 +. t7 *. t3) *. abs t4 +. t7 *. t6)
*. t +. eta
}
= (a **. b **. c) **. (d **. (e **. f))
end