Files
why3/examples/mergesort_array.mlw
2018-06-15 16:45:58 +02:00

308 lines
9.7 KiB
Plaintext

(** {1 Sorting arrays using mergesort}
Author: Jean-Christophe Filliâtre (CNRS)
*)
(** {2 Parameters} *)
module Elt
use export int.Int
use export array.Array
type elt
val predicate le elt elt
clone relations.TotalPreOrder with
type t = elt, predicate rel = le, axiom .
clone export array.Sorted with type
elt = elt, predicate le = le, axiom .
end
(** {2 Merging}
It is well-known than merging sub-arrays in-place is extremely difficult
(we don't even know how to do it in linear time).
So we use some extra storage i.e. we merge two segments of a first array
into a second array. *)
module Merge
clone export Elt with axiom .
use export ref.Refint
use export array.Array
use map.Occ
use export array.ArrayPermut
(* merges tmp[l..m[ and tmp[m..r[ into a[l..r[ *)
let merge (tmp a: array elt) (l m r: int) : unit
requires { 0 <= l <= m <= r <= length tmp = length a }
requires { sorted_sub tmp l m }
requires { sorted_sub tmp m r }
ensures { sorted_sub a l r }
ensures { permut tmp a l r }
ensures { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
= let i = ref l in
let j = ref m in
for k = l to r-1 do
invariant { l <= !i <= m <= !j <= r }
invariant { !i - l + !j - m = k - l }
invariant { sorted_sub a l k }
invariant { forall x y: int. l <= x < k -> !i <= y < m -> le a[x] tmp[y] }
invariant { forall x y: int. l <= x < k -> !j <= y < r -> le a[x] tmp[y] }
invariant { forall v: elt.
occ v tmp.elts l !i + occ v tmp.elts m !j = occ v a.elts l k }
invariant { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
if !i < m && (!j = r || le tmp[!i] tmp[!j]) then begin
a[k] <- tmp[!i];
incr i
end else begin
a[k] <- tmp[!j];
incr j
end
done
(* merges a[l..m[ and a[m..r[ into a[l..r[, using tmp as a temporary *)
let merge_using (tmp a: array elt) (l m r: int) : unit
requires { 0 <= l <= m <= r <= length tmp = length a }
requires { sorted_sub a l m }
requires { sorted_sub a m r }
ensures { sorted_sub a l r }
ensures { permut (old a) a l r }
ensures { forall i: int.
(0 <= i < l \/ r <= i < length a) -> a[i] = (old a)[i] }
= if l < m && m < r then (* both sides are non empty *)
if le a[m-1] a[m] then (* OPTIM: already sorted *)
assert { forall i1 i2: int. l <= i1 < m -> m <= i2 < r ->
le a[i1] a[m-1] && le a[m] a[i2] }
else begin
label N in
blit a l tmp l (r - l);
merge tmp a l m r;
assert { permut_sub (a at N) a l r }
end
end
(** {2 Top-down, recursive mergesort}
Split in equal halves, recursively sort the two, and then merge. *)
module TopDownMergesort
clone Merge with axiom .
use mach.int.Int
let rec mergesort_rec (a tmp: array elt) (l r: int) : unit
requires { 0 <= l <= r <= length a = length tmp }
ensures { sorted_sub a l r }
ensures { permut_sub (old a) a l r }
variant { r - l }
= if l >= r-1 then return;
let m = l + (r - l) / 2 in
assert { l <= m < r };
mergesort_rec a tmp l m;
assert { permut_sub (old a) a l r };
label M in
mergesort_rec a tmp m r;
assert { permut_sub (a at M) a l r };
merge_using tmp a l m r
let mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
=
let tmp = Array.copy a in
mergesort_rec a tmp 0 (length a)
end
(** {2 Bottom-up, iterative mergesort}
First sort segments of length 1, then of length 2, then of length 4, etc.
until the array is sorted.
Surprisingly, the proof is much more complex than for natural mergesort
(see below). *)
module BottomUpMergesort
clone Merge with axiom .
use mach.int.Int
use int.MinMax
let bottom_up_mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
= let n = length a in
let tmp = Array.copy a in
let len = ref 1 in
while !len < n do
invariant { 1 <= !len }
invariant { permut_all (old a) a }
invariant { forall k: int. let l = k * !len in
0 <= l < n -> sorted_sub a l (min n (l + !len)) }
variant { 2 * n - !len }
label L in
let lo = ref 0 in
let ghost i = ref 0 in
while !lo < n - !len do
invariant { 0 <= !lo /\ !lo = 2 * !i * !len }
invariant { permut_all (a at L) a }
invariant { forall k: int. let l = k * !len in
!lo <= l < n -> sorted_sub a l (min n (l + !len)) }
invariant { forall k: int. let l = k * (2 * !len) in
0 <= l < !lo -> sorted_sub a l (min n (l + 2 * !len)) }
variant { n + !len - !lo }
let mid = !lo + !len in
assert { mid = (2 * !i + 1) * !len };
assert { sorted_sub a !lo (min n (!lo + !len)) };
let hi = min n (mid + !len) in
assert { sorted_sub a mid (min n (mid + !len)) };
label M in
merge_using tmp a !lo mid hi;
assert { permut_sub (a at M) a !lo hi };
assert { permut_all (a at M) a };
assert { hi = min n (!lo + 2 * !len) };
assert { sorted_sub a !lo (min n (!lo + 2 * !len)) };
assert { forall k: int. let l = k * !len in mid + !len <= l < n ->
sorted_sub (a at M) l (min n (l + !len)) &&
sorted_sub a l (min n (l + !len)) };
assert { forall k: int. let l = k * (2 * !len) in 0 <= l < mid + !len ->
k <= !i &&
(k < !i ->
min n (l + 2 * !len) <= !lo &&
sorted_sub (a at M) l (min n (l + 2 * !len)) &&
sorted_sub a l (min n (l + 2 * !len)) )
&&
(k = !i ->
l = !lo /\ sorted_sub a l (min n (l + 2 * !len)))
};
lo := mid + !len;
ghost incr i
done;
assert { forall k: int. let l = k * (2 * !len) in 0 <= l < n ->
l = (k * 2) * !len &&
(l < !lo ->
sorted_sub a l (min n (l + 2 * !len))) &&
(l >= !lo ->
sorted_sub a l (min n (l + !len)) &&
min n (l + 2 * !len) = min n (l + !len) = n &&
sorted_sub a l (min n (l + 2 * !len))) };
len := 2 * !len;
done;
assert { sorted_sub a (0 * !len) (min n (0 + !len)) }
end
(** {2 Natural mergesort}
This is a mere variant of bottom-up mergesort above, where
we start with ascending runs (i.e. segments that are already sorted)
instead of starting with single elements. *)
module NaturalMergesort
clone Merge with axiom .
use mach.int.Int
use int.MinMax
(* returns the maximal hi such that a[lo..hi[ is sorted *)
let find_run (a: array elt) (lo: int) : int
requires { 0 <= lo < length a }
ensures { lo < result <= length a }
ensures { sorted_sub a lo result }
ensures { result < length a -> not (le a[result-1] a[result]) }
=
let i = ref (lo + 1) in
while !i < length a && le a[!i - 1] a[!i] do
invariant { lo < !i <= length a }
invariant { sorted_sub a lo !i }
variant { length a - !i }
incr i
done;
!i
let natural_mergesort (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
= let n = length a in
if n <= 1 then return;
let tmp = Array.copy a in
let ghost first_run = ref 0 in
while true do
invariant { 0 <= !first_run <= n && sorted_sub a 0 !first_run }
invariant { permut_all (old a) a }
variant { n - !first_run }
label L in
let lo = ref 0 in
while !lo < n - 1 do
invariant { 0 <= !lo <= n }
invariant { !first_run at L <= !first_run <= n }
invariant { sorted_sub a 0 !first_run }
invariant { !lo = 0 \/ !lo >= !first_run > !first_run at L }
invariant { permut_all (a at L) a }
variant { n - !lo }
let mid = find_run a !lo in
if mid = n then begin if !lo = 0 then return; break end;
let hi = find_run a mid in
label M in
merge_using tmp a !lo mid hi;
assert { permut_sub (a at M) a !lo hi };
assert { permut_all (a at M) a };
ghost if !lo = 0 then first_run := hi;
lo := hi;
done
done
(** an alternative implementation suggested by Martin Clochard,
mixing top-down recursive and natural mergesort
the purpose is to avoid unnecessary calls to [find_run] in
the code above *)
let rec naturalrec (tmp a: array elt) (lo k: int) : int
requires { 0 <= lo <= length a = length tmp }
requires { 0 <= k }
ensures { result = length a \/ lo + k < result < length a }
ensures { sorted_sub a lo result }
ensures { permut_sub (old a) a lo (length a) }
ensures { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
variant { k }
= let n = length a in
if lo >= n-1 then return n;
let mid = ref (find_run a lo) in
if !mid = n then return n;
for i = 0 to k-1 do
invariant { lo + i < !mid < n }
invariant { sorted_sub a lo !mid }
invariant { permut_sub (old a) a lo (length a) }
invariant { forall j: int. 0 <= j < lo -> a[j] = (old a)[j] }
let hi = naturalrec tmp a !mid i in
assert { permut_sub (old a) a lo (length a) };
label M in
merge_using tmp a lo !mid hi;
assert { permut_sub (a at M) a lo hi };
assert { permut_sub (a at M) a lo (length a) };
mid := hi;
if !mid = n then return n
done;
!mid
let natural_mergesort2 (a: array elt) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
=
let tmp = Array.copy a in
let _ = naturalrec tmp a 0 (length a) in
()
end