Files
why3/examples/max_matrix.mlw
Jean-Christophe Filliatre 21a4cfe144 no more theory sum.Sum
it is subsumed by theory int.Sum
theories map.MapSum and array.ArraySum now use int.Sum
2020-02-12 10:30:25 +01:00

240 lines
6.6 KiB
Plaintext

(* Given a nxn matrix m of nonnegative integers, we want to pick up one element
in each row and each column, so that their sum is maximal.
We generalize the problem as follows: f(i,c) is the maximum for rows >= i
and columns in set c. Thus the solution is f(0,{0,1,...,n-1}).
f is easily defined recursively, as we have
f(i,c) = max{j in c} m[i][j] + f(i+1, C\{j})
As such, it would still be a brute force approach (of complexity n!)
but we can memoize f and then the search space decreases to n*2^n.
The following code implements such a solution. Sets of integers are
provided in theory Bitset. Hash tables for memoization are provided
in module HashTable (see file hash_tables.mlw for an implementation).
Code for f is in module MaxMatrixMemo (mutually recursive functions
maximum and memo).
*)
theory Bitset
use int.Int
constant size : int (* elements belong to 0..size-1 *)
type set
(* membership
[mem i s] can be implemented as [s land (1 lsl i) <> 0] *)
val predicate mem int set
(* removal
[remove i s] can be implemented as [s - (1 lsl i)] *)
val function remove (x: int) (s: set): set
ensures { forall y: int. mem y result <-> y <> x /\ mem y s }
(* the set {0,1,...,n-1}
[below n] can be implemented as [1 lsl n - 1] *)
val function below (n: int): set
requires { 0 <= n <= size }
ensures { forall x: int. mem x result <-> 0 <= x < n }
val function cardinal set: int
axiom cardinal_empty:
forall s: set. cardinal s = 0 <-> (forall x: int. not (mem x s))
axiom cardinal_remove:
forall x: int. forall s: set.
mem x s -> cardinal s = 1 + cardinal (remove x s)
axiom cardinal_below:
forall n: int. 0 <= n <= size ->
cardinal (below n) = if n >= 0 then n else 0
end
module HashTable
use option.Option
use int.Int
use map.Map
type t 'a 'b = private { ghost mutable contents: map 'a (option 'b) }
function ([]) (h: t 'a 'b) (k: 'a) : option 'b = Map.get h.contents k
val create (n:int) : t 'a 'b
requires { 0 < n } ensures { forall k: 'a. result[k] = None }
val clear (h: t 'a 'b) : unit writes {h}
ensures { forall k: 'a. h[k] = None }
val add (h: t 'a 'b) (k: 'a) (v: 'b) : unit writes {h}
ensures { h[k] = Some v /\ forall k': 'a. k' <> k -> h[k'] = (old h)[k'] }
exception Not_found
val find (h: t 'a 'b) (k: 'a) : 'b
ensures { h[k] = Some result } raises { Not_found -> h[k] = None }
end
module Appmap
use map.Map
use map.Const
type key
type t 'a = abstract { contents: map key 'a }
val function create (x: 'a): t 'a
ensures { result.contents = const x }
val function ([]) (m: t 'a) (k: key): 'a
ensures { result = m.contents[k] }
val function ([<-]) (m: t 'a) (k: key) (v: 'a): t 'a
ensures { result.contents = m.contents[k <- v] }
end
module Sum
use int.Int
use map.Map
type container
function f container int : int
(** `f c i` is the `i`-th element in the container `c` *)
function sum container int int : int
(** `sum c i j` is the sum `\sum_{i <= k < j} f c k` *)
axiom Sum_def_empty :
forall c : container, i j : int. j <= i -> sum c i j = 0
axiom Sum_def_non_empty :
forall c: container, i j : int. i < j -> sum c i j = f c i + sum c (i+1) j
axiom Sum_right_extension:
forall c : container, i j : int.
i < j -> sum c i j = sum c i (j-1) + f c (j-1)
axiom Sum_transitivity :
forall c : container, i k j : int. i <= k <= j ->
sum c i j = sum c i k + sum c k j
axiom Sum_eq :
forall c1 c2 : container, i j : int.
(forall k : int. i <= k < j -> f c1 k = f c2 k) -> sum c1 i j = sum c2 i j
end
module MaxMatrixMemo
use int.Int
use int.MinMax
use ref.Ref
use Bitset
use map.Map
clone Appmap with type key = int, axiom .
val constant n : int
ensures { 0 <= result <= size }
val constant m : t (t int)
ensures { forall i j: int. 0 <= i < n -> 0 <= j < n -> 0 <= result[i][j] }
type mapii = Map.map int int
predicate solution (s: mapii) (i: int) =
(forall k: int. i <= k < n -> 0 <= Map.get s k < n) /\
(forall k1 k2: int. i <= k1 < k2 < n -> Map.get s k1 <> Map.get s k2)
predicate permutation (s: mapii) = solution s 0
function f (s: mapii) (i: int) : int = m[i][Map.get s i]
clone Sum with type container = mapii, function f = f, axiom .
lemma sum_ind:
forall i: int. i < n -> forall j: int.
forall s: mapii. sum (Map.set s i j) i n = m[i][j] + sum s (i+1) n
use option.Option
use HashTable as H
type key = (int, set)
type value = (int, t int)
predicate pre (k: key) =
let (i, c) = k in
0 <= i <= n /\ cardinal c = n-i /\ (forall k: int. mem k c -> 0 <= k < n)
predicate post (k: key) (v: value) =
let (i, c) = k in
let (r, sol) = v in
0 <= r /\ solution sol.contents i /\
(forall k: int. i <= k < n -> mem sol[k] c) /\
r = sum sol.contents i n /\
(forall s: mapii.
solution s i -> (forall k: int. i <= k < n -> mem (Map.get s k) c) ->
r >= sum s i n)
type table = H.t key value
val table: table
predicate inv (t: table) =
forall k: key, v: value. H.([]) t k = Some v -> post k v
let rec maximum (i:int) (c: set) : (int, t int) variant {2*n-2*i}
requires { pre (i, c) /\ inv table }
ensures { post (i,c) result /\ inv table }
= if i = n then
(0, create 0)
else begin
let r = ref (-1) in
let sol = ref (create 0) in
for j = 0 to n-1 do
invariant {
inv table /\
( (!r = -1 /\ forall k: int. 0 <= k < j -> not (mem k c))
\/
(0 <= !r /\ solution !sol.contents i /\
(forall k: int. i <= k < n -> mem !sol[k] c) /\
!r = sum !sol.contents i n /\
(forall s: mapii.
solution s i -> (forall k: int. i <= k < n -> mem (Map.get s k) c) ->
mem (Map.get s i) c -> Map.get s i < j -> !r >= sum s i n)))
}
if mem j c then
let (r', sol') = memo (i+1) (remove j c) in
let x = m[i][j] + r' in
if x > !r then begin r := x; sol := sol'[i <- j] end
done;
assert { 0 <= !r };
(!r, !sol)
end
with memo (i:int) (c: set) : (int, t int) variant {2*n-2*i+1}
requires { pre (i,c) /\ inv table }
ensures { post (i,c) result /\ inv table }
= try H.find table (i,c)
with H.Not_found -> let r = maximum i c in H.add table (i,c) r; r end
let maxmat ()
ensures { exists s: mapii. permutation s /\ result = sum s 0 n }
ensures { forall s: mapii. permutation s -> result >= sum s 0 n }
= H.clear table;
assert { inv table };
let (r, _) = maximum 0 (below n) in r
end