Files
why3/examples/just_join.mlw
2024-10-04 16:35:37 +02:00

239 lines
7.9 KiB
Plaintext

(** Just Join for Parallel Ordered Sets
Guy E. Blelloch, Daniel Ferizovic, Yihan Sun
28th ACM Symposium on Parallelism in Algorithms and Architectures, 2016
https://www.cs.cmu.edu/~guyb/papers/BFS16.pdf
In the paper above, the authors implement various kinds of balanced
binary search trees on top of a `join` operation. This includes the
case of AVL trees, for which the authors prove that `join` preserves
the AVL property (Lemma 1 in the paper).
In the proof below, we verify this lemma using Why3 (the AVL
property, not the complexity). The paper skips the details regarding
the AVL property---“The resulting tree satisfies the AVL invariants
since rotations are used to restore the invariant (details left
out)”---but the proof happens to be subtle. See CRITICAL below.
Authors: Jean-Christophe Filliâtre (CNRS)
Paul Patault (Univ Paris-Saclay)
*)
use int.Int
use int.MinMax
(** the type `elt` of elements, ordered with `lt` *)
type elt
val (=) (x y: elt) : bool
ensures { result <-> x=y }
val predicate lt elt elt
clone relations.TotalStrictOrder with
type t = elt, predicate rel = lt, axiom .
(** the type of AVL trees, with the height stored in the first component
so that we get the height in O(1) with function `ht` *)
type tree = E | N int tree elt tree
let function ht (t: tree) : int =
match t with E -> 0 | N h _ _ _ -> h end
let function node (l: tree) (x: elt) (r: tree) : tree =
N (1 + max (ht l) (ht r)) l x r
let rec ghost function height (t: tree) : int
ensures { result >= 0 }
= match t with
| E -> 0
| N _ l _ r -> 1 + max (height l) (height r)
end
(** trees are well-formed i.e. the height stored in the nodes is correct *)
predicate wf (t: tree) =
match t with
| E -> true
| N h l _x r -> h = height t && wf l && wf r
end
(** AVL are binary search trees *)
predicate mem (y: elt) (t: tree) =
match t with
| E -> false
| N _ l x r -> mem y l || y=x || mem y r
end
predicate tree_lt (t: tree) (y: elt) =
forall x. mem x t -> lt x y
predicate lt_tree (y: elt) (t: tree) =
forall x. mem x t -> lt y x
predicate bst (t: tree) =
match t with
| E -> true
| N _ l x r -> bst l && tree_lt l x && bst r && lt_tree x r
end
(** AVL height invariant *)
predicate avl (t: tree) =
match t with
| E -> true
| N _ l _ r -> avl l && avl r && -1 <= height l - height r <= 1
end
(** Code starts here
Note: It is a pity that the specification for `rotate_left` and `rotate_right` is
longer than the code, but we can't make them logical functions since
they are partial functions. *)
let rotate_left (t: tree) : (r: tree)
requires { wf t } ensures { wf r }
requires { bst t } ensures { bst r }
requires { match t with N _ _ _ (N _ _ _ _) -> true | _ -> false end }
ensures { match t with N _ a x (N _ b y c) ->
match r with N _ (N _ ra rx rb) ry rc ->
ra=a && rx=x && rb=b && ry=y && rc=c
| _ -> false end | _ -> false end }
= match t with
| N _ a x (N _ b y c) -> node (node a x b) y c
| _ -> absurd
end
let rotate_right (t: tree) : (r: tree)
requires { wf t } ensures { wf r }
requires { bst t } ensures { bst r }
requires { match t with N _ (N _ _ _ _) _ _ -> true | _ -> false end }
ensures { match t with N _ (N _ a x b) y c ->
match r with N _ ra rx (N _ rb ry rc) ->
ra=a && rx=x && rb=b && ry=y && rc=c
| _ -> false end | _ -> false end }
= match t with
| N _ (N _ a x b) y c -> node a x (node b y c)
| _ -> absurd
end
let rec join_right (l: tree) (x: elt) (r: tree) : tree
requires { wf l && wf r } ensures { wf result }
requires { bst l && tree_lt l x }
requires { bst r && lt_tree x r } ensures { bst result }
ensures { forall y. mem y result <-> (mem y l || y=x || mem y r) }
requires { height l >= height r + 2 } variant { height l }
requires { avl l && avl r } ensures { avl result }
(* CRITICAL *)
ensures { height result = height l ||
height result = height l + 1 && match result with
| N _ rl _ rr ->
height rl = height l - 1 && height rr = height l
| _ -> false end }
= match l with
| N _ ll lx lr ->
if ht lr <= ht r + 1 then
let t = node lr x r in
if ht t <= ht ll + 1 then node ll lx t
else rotate_left (node ll lx (rotate_right t))
else
let t = join_right lr x r in
let t' = node ll lx t in
if ht t <= ht ll + 1 then t' else rotate_left t'
(* ^^^^^^^^^^^^^^
The CRITICAL postcondition is used here
to show that the rotated tree is indeed an AVL. *)
| E -> absurd
end
let rec join_left (l: tree) (x: elt) (r: tree) : tree
requires { wf l && wf r } ensures { wf result }
requires { bst l && tree_lt l x }
requires { bst r && lt_tree x r } ensures { bst result }
ensures { forall y. mem y result <-> (mem y l || y=x || mem y r) }
requires { height r >= height l + 2 } variant { height r }
requires { avl l && avl r } ensures { avl result }
(* CRITICAL *)
ensures { height result = height r ||
height result = height r + 1 && match result with
| N _ rl _ rr ->
height rr = height r - 1 && height rl = height r
| _ -> false end }
= match r with
| N _ rl rx rr ->
if ht rl <= ht l + 1 then
let t = node l x rl in
if ht t <= ht rr + 1 then node t rx rr
else rotate_right (node (rotate_left t) rx rr)
else
let t = join_left l x rl in
let t' = node t rx rr in
if ht t <= ht rr + 1 then t' else rotate_right t'
(* ^^^^^^^^^^^^^^^ *)
| E -> absurd
end
let join (l: tree) (x: elt) (r: tree) : tree
requires { wf l && wf r } ensures { wf result }
requires { bst l && tree_lt l x }
requires { bst r && lt_tree x r } ensures { bst result }
ensures { forall y. mem y result <-> (mem y l || y=x || mem y r) }
requires { avl l && avl r } ensures { avl result }
ensures { height result <= 1 + max (height l) (height r) }
= if ht l > ht r + 1 then join_right l x r
else if ht r > ht l + 1 then join_left l x r
else node l x r
(** The remaining is much simpler. *)
let rec split (t: tree) (y: elt) : (l: tree, b: bool, r: tree)
requires { wf t && bst t && avl t }
variant { height t }
ensures { wf l && bst l && avl l } ensures { tree_lt l y }
ensures { wf r && bst r && avl r } ensures { lt_tree y r }
ensures { forall x. mem x t <-> (mem x l || mem x r || b && x=y) }
= match t with
| E -> E, false, E
| N _ l x r ->
if y = x then l, true, r
else if lt y x then let ll, b, lr = split l y in ll, b, join lr x r
else let rl, b, rr = split r y in join l x rl, b, rr
end
let insert (x: elt) (t: tree) : (r: tree)
requires { wf t && bst t && avl t }
ensures { wf r && bst r && avl r }
ensures { forall y. mem y r <-> (mem y t || y=x) }
= let l, _, r = split t x in
join l x r
let rec split_last (t: tree) : (r: tree, m: elt)
requires { t <> E }
requires { wf t && bst t && avl t }
variant { height t }
ensures { wf r && bst r && avl r }
ensures { forall x. mem x t <-> (mem x r && lt x m || x=m) }
ensures { tree_lt r m }
= match t with
| N _ l x E -> l, x
| N _ l x r -> let r', m = split_last r in join l x r', m
| _ -> absurd
end
let join2 (l r: tree) : (t: tree)
requires { wf l && bst l && avl l }
requires { wf r && bst r && avl r }
requires { forall x y. mem x l -> mem y r -> lt x y }
ensures { wf t && bst t && avl t }
ensures { forall x. mem x t <-> (mem x l || mem x r) }
= match l with
| E -> r
| _ -> let l, k = split_last l in join l k r
end
let delete (x: elt) (t: tree) : (r: tree)
requires { wf t && bst t && avl t }
ensures { wf r && bst r && avl r }
ensures { forall y. mem y r <-> (mem y t && y<>x) }
= let l, _, r = split t x in
join2 l r