mirror of
https://github.com/AdaCore/why3.git
synced 2026-02-12 12:34:55 -08:00
130 lines
2.9 KiB
Plaintext
130 lines
2.9 KiB
Plaintext
|
|
(* Greatest common divisor, using the Euclidean algorithm *)
|
|
|
|
module EuclideanAlgorithm
|
|
|
|
use mach.int.Int
|
|
use number.Gcd
|
|
|
|
let rec euclid (u v: int) : int
|
|
variant { v }
|
|
requires { u >= 0 /\ v >= 0 }
|
|
ensures { result = gcd u v }
|
|
=
|
|
if v = 0 then
|
|
u
|
|
else
|
|
euclid v (u % v)
|
|
|
|
end
|
|
|
|
module EuclideanAlgorithmIterative
|
|
|
|
use mach.int.Int
|
|
use ref.Ref
|
|
use number.Gcd
|
|
|
|
let euclid (u0 v0: int) : int
|
|
requires { u0 >= 0 /\ v0 >= 0 }
|
|
ensures { result = gcd u0 v0 }
|
|
=
|
|
let ref u = u0 in
|
|
let ref v = v0 in
|
|
while v <> 0 do
|
|
invariant { u >= 0 /\ v >= 0 }
|
|
invariant { gcd u v = gcd u0 v0 }
|
|
variant { v }
|
|
let tmp = v in
|
|
v <- u % v;
|
|
u <- tmp
|
|
done;
|
|
u
|
|
|
|
end
|
|
|
|
module BinaryGcd
|
|
|
|
use mach.int.Int
|
|
use number.Parity
|
|
use number.Gcd
|
|
|
|
lemma even1: forall n: int. 0 <= n -> even n <-> n = 2 * div n 2
|
|
lemma odd1: forall n: int. 0 <= n -> not (even n) <-> n = 2 * div n 2 + 1
|
|
lemma div_nonneg: forall n: int. 0 <= n -> 0 <= div n 2
|
|
|
|
use number.Coprime
|
|
|
|
lemma gcd_even_even: forall u v: int. 0 <= v -> 0 <= u ->
|
|
gcd (2 * u) (2 * v) = 2 * gcd u v
|
|
lemma gcd_even_odd: forall u v: int. 0 <= v -> 0 <= u ->
|
|
gcd (2 * u) (2 * v + 1) = gcd u (2 * v + 1)
|
|
lemma gcd_even_odd2: forall u v: int. 0 <= v -> 0 <= u ->
|
|
even u -> odd v -> gcd u v = gcd (div u 2) v
|
|
lemma odd_odd_div2: forall u v: int. 0 <= v -> 0 <= u ->
|
|
div ((2*u+1) - (2*v+1)) 2 = u - v
|
|
|
|
let lemma gcd_odd_odd (u v: int)
|
|
requires { 0 <= v <= u }
|
|
ensures { gcd (2 * u + 1) (2 * v + 1) = gcd (u - v) (2 * v + 1) }
|
|
= assert { gcd (2 * u + 1) (2 * v + 1) =
|
|
gcd ((2*u+1) - 1*(2*v+1)) (2 * v + 1) }
|
|
|
|
lemma gcd_odd_odd2: forall u v: int. 0 <= v <= u ->
|
|
odd u -> odd v -> gcd u v = gcd (div (u - v) 2) v
|
|
|
|
let rec binary_gcd (u v: int) : int
|
|
variant { v, u }
|
|
requires { u >= 0 /\ v >= 0 }
|
|
ensures { result = gcd u v }
|
|
=
|
|
if v > u then binary_gcd v u else
|
|
if v = 0 then u else
|
|
if mod u 2 = 0 then
|
|
if mod v 2 = 0 then 2 * binary_gcd (u / 2) (v / 2)
|
|
else binary_gcd (u / 2) v
|
|
else
|
|
if mod v 2 = 0 then binary_gcd u (v / 2)
|
|
else binary_gcd ((u - v) / 2) v
|
|
|
|
end
|
|
|
|
(** With machine integers.
|
|
Note that we assume parameters u, v to be nonnegative.
|
|
Otherwise, for u = v = min_int, the gcd could not be represented. *)
|
|
|
|
(* does not work with extraction driver ocaml64
|
|
module EuclideanAlgorithm31
|
|
|
|
use mach.int.Int31
|
|
use number.Gcd
|
|
|
|
let rec euclid (u v: int31) : int31
|
|
variant { to_int v }
|
|
requires { u >= 0 /\ v >= 0 }
|
|
ensures { result = gcd u v }
|
|
=
|
|
if v = 0 then
|
|
u
|
|
else
|
|
euclid v (u % v)
|
|
|
|
end
|
|
*)
|
|
|
|
module EuclideanAlgorithm63
|
|
|
|
use mach.int.Int63
|
|
use number.Gcd
|
|
|
|
let rec euclid (u v: int63) : int63
|
|
variant { to_int v }
|
|
requires { u >= 0 /\ v >= 0 }
|
|
ensures { result = gcd u v }
|
|
=
|
|
if v = 0 then
|
|
u
|
|
else
|
|
euclid v (u % v)
|
|
|
|
end
|