Files
why3/examples/f_puzzle.mlw
Guillaume Melquiond 6185360d78 Change extension to mlw.
2020-03-05 09:17:48 +01:00

53 lines
1.2 KiB
Plaintext

(* Let f be a function over natural numbers such that, for all n
f(f(n)) < f(n+1)
Show that f(n)=n for all n.
Inspired by a Dafny example (see http://searchco.de/codesearch/view/28108482)
Original reference is
Edsger W. Dijkstra: Heuristics for a Calculational Proof.
Inf. Process. Lett. (IPL) 53(3):141-143 (1995)
*)
theory Puzzle
use export int.Int
function f int: int
axiom H1: forall n: int. 0 <= n -> 0 <= f n
axiom H2: forall n: int. 0 <= n -> f (f n) < f (n+1)
end
theory Step1 (* k <= f(n+k) by induction over k *)
use Puzzle
predicate p (k: int) = forall n: int. 0 <= n -> k <= f (n+k)
clone int.SimpleInduction as I1
with predicate p = p, lemma base, lemma induction_step
end
theory Solution
use Puzzle
use Step1
lemma L3: forall n: int. 0 <= n -> n <= f n && f n <= f (f n)
lemma L4: forall n: int. 0 <= n -> f n < f (n+1)
(* so f is increasing *)
predicate p' (k: int) = forall n m: int. 0 <= n <= m <= k -> f n <= f m
clone int.SimpleInduction as I2
with predicate p = p', lemma base, lemma induction_step
lemma L5: forall n m: int. 0 <= n <= m -> f n <= f m
lemma L6: forall n: int. 0 <= n -> f n < n+1
goal G: forall n: int. 0 <= n -> f n = n
end