Files
why3/examples/euler011.mlw
2018-06-15 16:45:58 +02:00

223 lines
7.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
(** {1 Euler Project, problem11}
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
{h <Pre>
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
</Pre> }
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
*)
module ProductFour
use int.Int
use ref.Ref
use matrix.Matrix
use option.Option
(** Direction of the product checked *)
type direction =
| Left_bottom
| Right_bottom
| Bottom
| Right
(** Math functions about the result of a product. Incomplete product generate None *)
function left_diag (m: matrix int) (i: int) (j: int) : option int =
if (i < m.rows /\ j >= 0 /\ i >= 3 /\ j < m.columns - 3) then
Some (((m.elts i j) * (m.elts (i - 1) (j + 1)) * (m.elts (i - 2) (j + 2)) * (m.elts (i-3) (j+3))))
else
None
function right_diag (m: matrix int) (i: int) (j: int) : option int =
if (i < m.rows - 3 /\ i >= 0 /\ j < m.columns - 3 /\ j >= 0) then
Some (((m.elts i j) * (m.elts (i + 1) (j + 1)) * (m.elts (i + 2) (j + 2)) * (m.elts (i+3) (j+3))))
else
None
function line (m: matrix int) (i: int) (j: int) : option int =
if (0 <= j < m.columns /\ i >= 0 /\ i < m.rows - 3) then
Some ((m.elts i j) * (m.elts (i+1) j) * (m.elts (i+2) j) * (m.elts (i+3) j))
else
None
function column (m: matrix int) (i: int) (j: int) : option int =
if (0 <= i < m.rows /\ j >= 0 /\ j < m.columns - 3) then
Some ((m.elts i j) * (m.elts i (j+1)) * (m.elts i (j+2)) * (m.elts i (j + 3)))
else
None
(** Computational functions for the product in each direction *)
let right_diag_c m i j : option int =
ensures {result = right_diag m i j}
if (i < m.rows - 3 && i >= 0 && j < m.columns - 3 && j >= 0) then
Some (((get m i j) * (get m (i + 1) (j + 1)) * (get m (i + 2) (j + 2)) * (get m (i+3) (j+3))))
else
None
let left_diag_c m i j : option int =
ensures {result = left_diag m i j}
if (i < m.rows && j >= 0 && i >= 3 && j < m.columns - 3) then
Some (((get m i j) * (get m (i - 1) (j + 1)) * (get m (i - 2) (j + 2)) * (get m (i-3) (j+3))))
else
None
let line_c m i j : option int =
ensures {result = line m i j}
if (0 <= j && j < m.columns && i >= 0 && i < m.rows - 3) then
Some ((get m i j) * (get m (i+1) j) * (get m (i+2) j) * (get m (i+3) j))
else
None
let column_c m i j : option int =
ensures {result = column m i j}
if (0 <= i && i < m.rows && j >= 0 && j < m.columns - 3) then
Some ((get m i j) * (get m i (j+1)) * (get m i (j+2)) * (get m i (j + 3)))
else
None
(* function compute4 (m: matrix int) (i: int) (j: int) (d: direction) : option int = *)
(* match d with *)
(* | Left_bottom -> left_diag m i j *)
(* | Right_bottom -> right_diag m i j *)
(* | Bottom -> column m i j *)
(* | Right -> line m i j *)
(* end *)
(* TODO Failed attempt at pattern matching above. Combination of mathematical product result functions *)
function compute4 (m: matrix int) (i: int) (j: int) (d: direction) : option int =
if (d = Left_bottom) then left_diag m i j
else if (d = Right_bottom) then right_diag m i j
else if (d = Bottom) then column m i j
else if (d = Right) then line m i j
else None
(** A product is_valid if each elements of the product is in the matrix *)
(* predicate is_valid (m: matrix int) (i: int) (j: int) (d: direction) = *)
(* match d with *)
(* | Left_bottom -> i < m.rows /\ j >= 0 /\ i >= 3 /\ j < m.columns - 3 *)
(* | Right_bottom -> i >= 0 /\ j >= 0 /\ i < m.rows - 3 /\ j < m.columns - 3 *)
(* | Bottom -> 0 <= i /\ i < m.rows /\ j >= 0 /\ j < m.columns - 3 *)
(* | Right -> 0 <= j /\ j < m.columns /\ i >= 0 /\ i < m.rows - 3 *)
(* end *)
(** Return the maximum product of 4 for matrix m *)
let find_max (m: matrix int) =
requires {m.rows > 4 /\ m.columns > 4}
ensures {forall i j d. match (compute4 m i j d) with
| None -> true
| Some v -> v <= result
end}
ensures {exists i j d. Some result = compute4 m i j d}
(** Current max and element of the matrix for which it is attained *)
let cur_max = ref (
match (line_c m 0 0) with
| None -> 0 (* TODO should not happen *)
| Some v -> v
end) in
let cur_i = ref 0 in
let cur_j = ref 0 in
let cur_d = ref Right in
for i = 0 to (m.rows - 1) do
(* Cur_max is greater than each product already seen *)
invariant { forall i' j' d. (0 <= i' < i /\ 0 <= j' < m.columns) ->
match (compute4 m i' j' d) with
| None -> true
| Some v -> v <= !cur_max
end}
(* cur_max is actually the product at (cur_i, cur_j, cur_d) *)
invariant {Some !cur_max = compute4 m !cur_i !cur_j !cur_d}
for j = 0 to (m.columns - 1) do
(* cur_max is actually the product at (cur_i, cur_j, cur_d) *)
invariant {Some !cur_max = compute4 m !cur_i !cur_j !cur_d}
(* Cur_max is greater than each product already seen *)
invariant { forall i' j' d. ((i' = i /\ 0 <= j' /\ j' < j) \/ (0 <= i' < i /\ 0 <= j' < m.columns)) ->
match (compute4 m i' j' d) with
| None -> true
| Some v -> v <= !cur_max
end}
(* Computation of the product for each direction *)
match (left_diag_c m i j) with
| None -> ()
| Some v ->
if (v > !cur_max) then
begin
cur_max := v;
cur_i := i;
cur_j := j;
cur_d := Left_bottom;
end
end;
match (right_diag_c m i j) with
| None -> ()
| Some v ->
if (v > !cur_max) then
begin
cur_max := v;
cur_i := i;
cur_j := j;
cur_d := Right_bottom;
end
end;
match (line_c m i j) with
| None -> ()
| Some v ->
if (v > !cur_max) then
begin
cur_max := v;
cur_i := i;
cur_j := j;
cur_d := Right;
end
end;
match (column_c m i j) with
| None -> ()
| Some v ->
if (v > !cur_max) then
begin
cur_max := v;
cur_i := i;
cur_j := j;
cur_d := Bottom;
end
end;
done;
done;
(** Assert implying directly the postcondition *)
assert { Some !cur_max = compute4 m !cur_i !cur_j !cur_d};
!cur_max;;
end