Files
why3/examples/coma/avl.coma
2024-10-17 20:00:12 +02:00

161 lines
5.3 KiB
Plaintext

use int.Int
use bintree.AVL
use coma.Std
let unTree (t: tree) (onNode [] (l:tree) (x: elt) (r:tree)) (onLeaf) =
any
[ node (h: int) (x: elt) (l r: tree) ->
{ t = N h l x r } (! onNode {l} {x} {r})
| leaf ->
{ t = E } (! onLeaf) ]
let rotate_left (t: tree) (return (r: tree)) =
unTree {t} (fun (a:tree) (x:elt) (r:tree) ->
unTree {r} (fun (b:tree) (y:elt) (c:tree) ->
return {node (node a x b) y c})
fail) fail
let rotate_right (t: tree) (return (r: tree)) =
unTree {t} (fun (l:tree) (y:elt) (c:tree) ->
unTree {l} (fun (a:tree) (x:elt) (b:tree) ->
return {node a x (node b y c)})
fail) fail
let join_right (l: tree) (x: elt) (r: tree) (return (t: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } { height l >= height r + 2 } (!
any
)
[ return (t: tree) ->
{ bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
{ wf t } { avl t }
{ height t = height l ||
height t = height l + 1 && match t with
| N _ rl _ rr ->
height rl = height l - 1 && height rr = height l
| _ -> false end }
(! return {t}) ]
(* TODO join_right, join_left
= match l with
| N _ ll lx lr ->
if ht lr <= ht r + 1 then
let t = node lr x r in
if ht t <= ht ll + 1 then node ll lx t
else rotate_left (node ll lx (rotate_right t))
else
let t = join_right lr x r in
let t' = node ll lx t in
if ht t <= ht ll + 1 then t' else rotate_left t'
(* The CRITICAL postcondition is used here, when `rotate_left`
is used, to show that the rotated tree is indeed an AVL. *)
| E -> absurd
end
*)
let join_left (l: tree) (x: elt) (r: tree) (return (t: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } { height r >= height l + 2 } (!
any
)
[ return (t: tree) ->
{ bst t } { forall y. mem y t <-> (mem y l || y=x || mem y r) }
{ wf t } { avl t }
{ height t = height r ||
height t = height r + 1 && match t with
| N _ rl _ rr ->
height rr = height r - 1 && height rl = height r
| _ -> false end }
(! return {t}) ]
(*
= match r with
| N _ rl rx rr ->
if ht rl <= ht l + 1 then
let t = node l x rl in
if ht t <= ht rr + 1 then node t rx rr
else rotate_right (node (rotate_left t) rx rr)
else
let t = join_left l x rl in
let t' = node t rx rr in
if ht t <= ht rr + 1 then t' else rotate_right t'
| E -> absurd
end
*)
let join (l: tree) (x: elt) (r: tree) (return (r: tree)) =
{ bst l && tree_lt l x } { bst r && lt_tree x r }
{ wf l && wf r } { avl l && avl r } (!
if { ht l > ht r + 1 }
(-> join_right {l} {x} {r} return)
(-> if { ht r > ht l + 1 } (-> join_left {l} {x} {r} return)
(-> return {node l x r})))
[ return (t:tree)
{ wf t && avl t }
{ bst t }
{ forall y. mem y t <-> (mem y l || y=x || mem y r) }
-> return {t} ]
let rec split_last (t: tree) (return (r: tree) (m: elt)) =
unTree {t}
(fun (l: tree) (x: elt) (r: tree) ->
{ wf t && bst t && avl t } (!
if {r=E} (-> return {l} {x})
(-> split_last {r} (fun (r':tree) (m:elt) ->
join {l} {x} {r'} (fun (r:tree) ->
return {r} {m}))))
[ return (r: tree) (m: elt)
{ wf r && bst r && avl r }
{ forall x. mem x t <-> (mem x r && lt x m || x=m) }
{ tree_lt r m }
-> return {r} {m} ])
fail
(* no need for a spec here => join2 is fully inlined *)
let join2 (l r: tree) (return (t: tree)) =
if {l=E} (-> return {r})
(-> split_last {l} (fun (l:tree) (k:elt) ->
join {l} {k} {r} return))
let rec split (t: tree) (y: elt) (return (l: tree) (b: bool) (r: tree)) =
unTree {t}
(fun (l:tree) (x:elt) (r:tree) ->
{ wf t && bst t && avl t }
(!
if {y=x} (-> return {l} {true} {r})
(-> if {lt y x} (-> split {l} {y} (fun (ll:tree) (b:bool) (lr:tree) ->
join {lr} {x} {r} (fun (r':tree) ->
return {ll} {b} {r'})))
(-> split {r} {y} (fun (rl:tree) (b:bool) (rr:tree) ->
join {l} {x} {rl} (fun (l':tree) ->
return {l'} {b} {rr}))))
)
[return (l: tree) (b: bool) (r: tree) ->
{ wf l && bst l && avl l } { wf r && bst r && avl r }
{ tree_lt l y } { lt_tree y r }
{ forall x. mem x t <-> (mem x l || mem x r || b && x=y) }
(! return {l} {b} {r}) ]
)
(-> return {E} {false} {E})
let insert (x: elt) (t: tree) (return (r: tree)) =
{ wf t && bst t && avl t } (!
split {t} {x} (fun (l:tree) (_b:bool) (r:tree) ->
join {l} {x} {r} return)
)
[ return (r:tree) ->
{ wf r && bst r && avl r }
{ forall y. mem y r <-> (mem y t || y=x) }
(! return {r}) ]
let delete (x: elt) (t: tree) (return (r: tree)) =
{ wf t && bst t && avl t } (!
split {t} {x} (fun (l: tree) (b: bool) (r: tree) ->
join2 {l} {r} return)
)
[ return (r:tree) ->
{ wf r && bst r && avl r }
{ forall y. mem y r <-> (mem y t && y<>x) }
(! return {r}) ]