Files
why3/examples/binomial.mlw
2025-05-20 14:35:38 +02:00

102 lines
2.5 KiB
Plaintext

(** {1 Binomial coefficients}
The binomial coefficient C(n,k) is equal to
{h <pre>
n*(n-1)*(n-2)*...*(n-k+1)
-------------------------
k*(k-1)*(k-2)*...*1
</pre>}
This can be readily computed with three lines of C:
{h <pre>
int c = 1;
for (int i = 1; i <= k ; i++)
c = c * (n - i + 1) / i;
</pre>}
or even better
{h <pre>
int c = 1;
for (int i = 1; i <= k ; i++)
c = c * (n - k + i) / i;
</pre>}
In the code above, it is not obvious that each division is exact.
Below is a proof.
Author: Jean-Christophe Filliâtre (CNRS)
*)
use int.Int
use int.EuclideanDivision
use int.MinMax
let function (/) (x: int) (y: int)
requires { [@expl:check division by zero] y <> 0 }
= div x y
let rec function comb (n k: int) : int
requires { 0 <= k <= n }
variant { n }
ensures { result >= 1 }
= if k = 0 || k = n then 1 else comb (n-1) k + comb (n-1) (k-1)
let rec lemma symmetry (n k: int)
requires { 0 <= k <= n }
ensures { comb n (n - k) = comb n k }
variant { n }
= if 0 < k < n then (symmetry (n-1) k; symmetry (n-1) (k-1))
(** Starting from the biggest number in the numerator.
The key property is that the accumulator is always a binomial
coefficient. And the lemma below states the identity that shows
why the division is exact. *)
let rec lemma prop2 (n k: int)
requires { 1 <= k <= n }
ensures { k * comb n k = comb n (k - 1) * (n - k + 1) }
variant { n }
= if k < n then prop2 (n-1) k;
if 1 < k then prop2 (n-1) (k-1)
let compute (n k: int) : (r: int)
requires { 0 <= k <= n }
ensures { r = comb n k }
= let k = min k (n - k) in
let ref r = 1 in
for i = 1 to k do
invariant { 1 <= i <= k + 1 }
invariant { r = comb n (i - 1) }
r <- r * (n - i + 1) / i;
prop2 n i;
done;
r
(** And now starting from the smallest number in the numerator,
which incurs smaller intermediate values and thus possibly
less integer overflows.
Again, the key property is that the accumulator is a binomial
coefficient, with the following lemma showing why the division is
exact. *)
let lemma prop3 (n k: int)
requires { 1 <= k <= n }
ensures { k * comb n k = comb (n - 1) (k - 1) * n }
= ()
let compute2 (n k: int) : (r: int)
requires { 0 <= k <= n }
ensures { r = comb n k }
= let k = min k (n - k) in
let ref r = 1 in
for i = 1 to k do
invariant { 1 <= i <= k + 1 }
invariant { r = comb (n - k + i - 1) (i - 1) }
r <- r * (n - k + i) / i;
prop3 (n - k + i) i;
done;
r