Files
why3/examples/binary_search_vc_sp.mlw
2018-06-15 16:45:58 +02:00

153 lines
4.0 KiB
Plaintext

(* Binary search
A classical example. Searches a sorted array for a given value v. *)
module BinarySearch
use int.Int
use int.ComputerDivision
use ref.Ref
use array.Array
(* the code and its specification *)
exception Not_found (* raised to signal a search failure *)
let binary_search (a : array int) (v : int) : int
requires { forall i1 i2 : int. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] }
ensures { 0 <= result < length a /\ a[result] = v }
raises { Not_found -> forall i:int. 0 <= i < length a -> a[i] <> v }
= [@vc:sp]
let l = ref 0 in
let u = ref (length a - 1) in
while !l <= !u do
invariant { 0 <= !l /\ !u < length a }
invariant {
forall i : int. 0 <= i < length a -> a[i] = v -> !l <= i <= !u }
variant { !u - !l }
let m = !l + div (!u - !l) 2 in
assert { !l <= m <= !u };
if a[m] < v then
l := m + 1
else if a[m] > v then
u := m - 1
else
return m
done;
raise Not_found
end
(* A generalization: the midpoint is computed by some abstract function.
The only requirement is that it lies between l and u. *)
module BinarySearchAnyMidPoint
use int.Int
use ref.Ref
use array.Array
exception Not_found (* raised to signal a search failure *)
val midpoint (l:int) (u:int) : int
requires { l <= u } ensures { l <= result <= u }
let binary_search (a :array int) (v : int) : int
requires { forall i1 i2 : int. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] }
ensures { 0 <= result < length a /\ a[result] = v }
raises { Not_found -> forall i:int. 0 <= i < length a -> a[i] <> v }
= [@vc:sp]
let l = ref 0 in
let u = ref (length a - 1) in
while !l <= !u do
invariant { 0 <= !l /\ !u < length a }
invariant {
forall i : int. 0 <= i < length a -> a[i] = v -> !l <= i <= !u }
variant { !u - !l }
let m = midpoint !l !u in
if a[m] < v then
l := m + 1
else if a[m] > v then
u := m - 1
else
return m
done;
raise Not_found
end
(* binary search using 32-bit integers *)
module BinarySearchInt32
use int.Int
use mach.int.Int32
use ref.Ref
use mach.array.Array32
(* the code and its specification *)
exception Not_found (* raised to signal a search failure *)
let binary_search (a : array int32) (v : int32) : int32
requires { forall i1 i2 : int. 0 <= i1 <= i2 < a.length ->
a[i1] <= a[i2] }
ensures { 0 <= result < a.length /\ a[result] = v }
raises { Not_found ->
forall i:int. 0 <= i < a.length -> a[i] <> v }
= [@vc:sp]
let l = ref 0 in
let u = ref (length a - 1) in
while !l <= !u do
invariant { 0 <= !l /\ !u < a.length }
invariant { forall i : int. 0 <= i < a.length ->
a[i] = v -> !l <= i <= !u }
variant { !u - !l }
let m = !l + (!u - !l) / 2 in
assert { !l <= m <= !u };
if a[m] < v then
l := m + 1
else if a[m] > v then
u := m - 1
else
return m
done;
raise Not_found
end
(* A particular case with Boolean values (0 or 1) and a sentinel 1 at the end.
We look for the first position containing a 1. *)
module BinarySearchBoolean
use int.Int
use int.ComputerDivision
use ref.Ref
use array.Array
let binary_search (a: array int) : int
requires { 0 < a.length }
requires { forall i j. 0 <= i <= j < a.length -> 0 <= a[i] <= a[j] <= 1 }
requires { a[a.length - 1] = 1 }
ensures { 0 <= result < a.length }
ensures { a[result] = 1 }
ensures { forall i. 0 <= i < result -> a[i] = 0 }
= [@vc:sp]
let lo = ref 0 in
let hi = ref (length a - 1) in
while !lo < !hi do
invariant { 0 <= !lo <= !hi < a.length }
invariant { a[!hi] = 1 }
invariant { forall i. 0 <= i < !lo -> a[i] = 0 }
variant { !hi - !lo }
let mid = !lo + div (!hi - !lo) 2 in
if a[mid] = 1 then
hi := mid
else
lo := mid + 1
done;
!lo
end