mirror of
https://github.com/AdaCore/why3.git
synced 2026-02-12 12:34:55 -08:00
153 lines
4.0 KiB
Plaintext
153 lines
4.0 KiB
Plaintext
(* Binary search
|
|
|
|
A classical example. Searches a sorted array for a given value v. *)
|
|
|
|
module BinarySearch
|
|
|
|
use int.Int
|
|
use int.ComputerDivision
|
|
use ref.Ref
|
|
use array.Array
|
|
|
|
(* the code and its specification *)
|
|
|
|
exception Not_found (* raised to signal a search failure *)
|
|
|
|
let binary_search (a : array int) (v : int) : int
|
|
requires { forall i1 i2 : int. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] }
|
|
ensures { 0 <= result < length a /\ a[result] = v }
|
|
raises { Not_found -> forall i:int. 0 <= i < length a -> a[i] <> v }
|
|
= [@vc:sp]
|
|
let l = ref 0 in
|
|
let u = ref (length a - 1) in
|
|
while !l <= !u do
|
|
invariant { 0 <= !l /\ !u < length a }
|
|
invariant {
|
|
forall i : int. 0 <= i < length a -> a[i] = v -> !l <= i <= !u }
|
|
variant { !u - !l }
|
|
let m = !l + div (!u - !l) 2 in
|
|
assert { !l <= m <= !u };
|
|
if a[m] < v then
|
|
l := m + 1
|
|
else if a[m] > v then
|
|
u := m - 1
|
|
else
|
|
return m
|
|
done;
|
|
raise Not_found
|
|
|
|
end
|
|
|
|
(* A generalization: the midpoint is computed by some abstract function.
|
|
The only requirement is that it lies between l and u. *)
|
|
|
|
module BinarySearchAnyMidPoint
|
|
|
|
use int.Int
|
|
use ref.Ref
|
|
use array.Array
|
|
|
|
exception Not_found (* raised to signal a search failure *)
|
|
|
|
val midpoint (l:int) (u:int) : int
|
|
requires { l <= u } ensures { l <= result <= u }
|
|
|
|
let binary_search (a :array int) (v : int) : int
|
|
requires { forall i1 i2 : int. 0 <= i1 <= i2 < length a -> a[i1] <= a[i2] }
|
|
ensures { 0 <= result < length a /\ a[result] = v }
|
|
raises { Not_found -> forall i:int. 0 <= i < length a -> a[i] <> v }
|
|
= [@vc:sp]
|
|
let l = ref 0 in
|
|
let u = ref (length a - 1) in
|
|
while !l <= !u do
|
|
invariant { 0 <= !l /\ !u < length a }
|
|
invariant {
|
|
forall i : int. 0 <= i < length a -> a[i] = v -> !l <= i <= !u }
|
|
variant { !u - !l }
|
|
let m = midpoint !l !u in
|
|
if a[m] < v then
|
|
l := m + 1
|
|
else if a[m] > v then
|
|
u := m - 1
|
|
else
|
|
return m
|
|
done;
|
|
raise Not_found
|
|
|
|
end
|
|
|
|
(* binary search using 32-bit integers *)
|
|
|
|
module BinarySearchInt32
|
|
|
|
use int.Int
|
|
use mach.int.Int32
|
|
use ref.Ref
|
|
use mach.array.Array32
|
|
|
|
(* the code and its specification *)
|
|
|
|
exception Not_found (* raised to signal a search failure *)
|
|
|
|
let binary_search (a : array int32) (v : int32) : int32
|
|
requires { forall i1 i2 : int. 0 <= i1 <= i2 < a.length ->
|
|
a[i1] <= a[i2] }
|
|
ensures { 0 <= result < a.length /\ a[result] = v }
|
|
raises { Not_found ->
|
|
forall i:int. 0 <= i < a.length -> a[i] <> v }
|
|
= [@vc:sp]
|
|
let l = ref 0 in
|
|
let u = ref (length a - 1) in
|
|
while !l <= !u do
|
|
invariant { 0 <= !l /\ !u < a.length }
|
|
invariant { forall i : int. 0 <= i < a.length ->
|
|
a[i] = v -> !l <= i <= !u }
|
|
variant { !u - !l }
|
|
let m = !l + (!u - !l) / 2 in
|
|
assert { !l <= m <= !u };
|
|
if a[m] < v then
|
|
l := m + 1
|
|
else if a[m] > v then
|
|
u := m - 1
|
|
else
|
|
return m
|
|
done;
|
|
raise Not_found
|
|
|
|
end
|
|
|
|
(* A particular case with Boolean values (0 or 1) and a sentinel 1 at the end.
|
|
We look for the first position containing a 1. *)
|
|
|
|
module BinarySearchBoolean
|
|
|
|
use int.Int
|
|
use int.ComputerDivision
|
|
use ref.Ref
|
|
use array.Array
|
|
|
|
let binary_search (a: array int) : int
|
|
requires { 0 < a.length }
|
|
requires { forall i j. 0 <= i <= j < a.length -> 0 <= a[i] <= a[j] <= 1 }
|
|
requires { a[a.length - 1] = 1 }
|
|
ensures { 0 <= result < a.length }
|
|
ensures { a[result] = 1 }
|
|
ensures { forall i. 0 <= i < result -> a[i] = 0 }
|
|
= [@vc:sp]
|
|
let lo = ref 0 in
|
|
let hi = ref (length a - 1) in
|
|
while !lo < !hi do
|
|
invariant { 0 <= !lo <= !hi < a.length }
|
|
invariant { a[!hi] = 1 }
|
|
invariant { forall i. 0 <= i < !lo -> a[i] = 0 }
|
|
variant { !hi - !lo }
|
|
let mid = !lo + div (!hi - !lo) 2 in
|
|
if a[mid] = 1 then
|
|
hi := mid
|
|
else
|
|
lo := mid + 1
|
|
done;
|
|
!lo
|
|
|
|
end
|