Files
why3/examples/bellman_ford.mlw
Jean-Christophe Filliatre 144865a118 no more libraries appmap and impmap
fixes #409
2020-02-11 17:56:34 +01:00

351 lines
12 KiB
Plaintext

(** {1 A proof of Bellman-Ford algorithm}
By Yuto Takei (University of Tokyo, Japan)
and Jean-Christophe Filliâtre (CNRS, France). *)
theory Graph
use export list.List
use export list.Append
use export list.Length
use export int.Int
use export set.Fset
(* the graph is defined by a set of vertices and a set of edges *)
type vertex
constant vertices: fset vertex
constant edges: fset (vertex, vertex)
predicate edge (x y: vertex) = mem (x,y) edges
(* edges are well-formed *)
axiom edges_def:
forall x y: vertex.
mem (x, y) edges -> mem x vertices /\ mem y vertices
(* a single source vertex s is given *)
val constant s: vertex
ensures { mem result vertices }
(* hence vertices is non empty *)
lemma vertices_cardinal_pos: cardinal vertices > 0
val constant nb_vertices: int
ensures { result = cardinal vertices }
(* paths *)
clone export graph.IntPathWeight
with type vertex = vertex, predicate edge = edge
lemma path_in_vertices:
forall v1 v2: vertex, l: list vertex.
mem v1 vertices -> path v1 l v2 -> mem v2 vertices
(* A key idea behind Bellman-Ford's correctness is that of simple path:
if there is a path from s to v, there is a path with less than
|V| edges. We formulate this in a slightly more precise way: if there
a path from s to v with at least |V| edges, then there must be a duplicate
vertex along this path. There is a subtlety here: since the last vertex
of a path is not part of the vertex list, we distinguish the case where
the duplicate vertex is the final vertex v.
Proof: Assume [path s l v] with length l >= |V|.
Consider the function f mapping i in {0..|V|} to the i-th element
of the list l ++ [v]. Since all elements of the
path (those in l and v) belong to V, then by the pigeon hole principle,
f cannot be injective from 0..|V| to V. Thus there exist two distinct
i and j in 0..|V| such that f(i)=f(j), which means that
l ++ [v] = l1 ++ [u] ++ l2 ++ [u] ++ l3
Two cases depending on l3=[] (and thus u=v) conclude the proof. Qed.
*)
clone pigeon.ListAndSet with type t = vertex
predicate cyc_decomp (v: vertex) (l: list vertex)
(vi: vertex) (l1 l2 l3: list vertex) =
l = l1 ++ l2 ++ l3 /\ length l2 > 0 /\
path s l1 vi /\ path vi l2 vi /\ path vi l3 v
lemma long_path_decomposition:
forall l v. path s l v /\ length l >= cardinal vertices ->
(exists vi l1 l2 l3. cyc_decomp v l vi l1 l2 l3)
by exists n l1 l2 l3. Cons v l = l1 ++ Cons n (l2 ++ Cons n l3)
so match l1 with
| Nil -> cyc_decomp v l v l2 (Cons n l3) Nil
| Cons v l1 -> cyc_decomp v l n l1 (Cons n l2) (Cons n l3)
end
lemma long_path_reduction:
forall l v. path s l v /\ length l >= cardinal vertices ->
exists l'. path s l' v /\ length l' < length l
by exists vi l1 l2 l3. cyc_decomp v l vi l1 l2 l3 /\ l' = l1 ++ l3
let lemma simple_path (v: vertex) (l: list vertex) : unit
requires { path s l v }
ensures { exists l'. path s l' v /\ length l' < cardinal vertices }
= let rec aux (n: int) : unit
ensures { forall l. length l <= n /\ path s l v ->
exists l'. path s l' v /\ length l' < cardinal vertices }
variant { n }
= if n > 0 then aux (n-1)
in
aux (length l)
(* negative cycle [v] -> [v] reachable from [s] *)
predicate negative_cycle (v: vertex) =
mem v vertices /\
(exists l1: list vertex. path s l1 v) /\
(exists l2: list vertex. path v l2 v /\ path_weight l2 v < 0)
(* key lemma for existence of a negative cycle
Proof: by induction on the (list) length of the shorter path l
If length l < cardinal vertices, then it contradicts hypothesis 1
thus length l >= cardinal vertices and thus the path contains a cycle
s ----> n ----> n ----> v
If the weight of the cycle n--->n is negative, we are done.
Otherwise, we can remove this cycle from the path and we get
an even shorter path, with a stricltly shorter (list) length,
thus we can apply the induction hypothesis. Qed.
*)
predicate all_path_gt (v: vertex) (n: int) =
forall l. path s l v /\ length l < cardinal vertices -> path_weight l v >= n
let lemma key_lemma_1 (v: vertex) (l: list vertex) (n: int) : unit
(* if any simple path has weight at least n *)
requires { all_path_gt v n }
(* and if there exists a shorter path *)
requires { path s l v /\ path_weight l v < n }
(* then there exists a negative cycle. *)
ensures { exists u. negative_cycle u }
= let rec aux (m: int) : (_a: 'a)
requires { forall u. not negative_cycle u }
requires { exists l. path s l v /\ path_weight l v < n /\ length l <= m }
ensures { false }
variant { m }
= assert { (exists l'. path s l' v /\ path_weight l' v < n /\ length l' < m)
by exists l. path s l v /\ path_weight l v < n /\ length l <= m
so exists vi l1 l2 l3. cyc_decomp v l vi l1 l2 l3
so let res = l1 ++ l3 in
path s res v /\ length res < length l /\ path_weight res v < n
by path_weight l v =
path_weight l1 vi + path_weight l2 vi + path_weight l3 v
so path_weight l2 vi >= 0 by not negative_cycle vi
};
aux (m-1)
in
if pure { forall u. not negative_cycle u } then aux (length l)
end
module ImpmapNoDom
use map.Map
use map.Const
type key
type t 'a = abstract { mutable contents: map key 'a }
val function create (x: 'a): t 'a
ensures { result.contents = const x }
val function ([]) (m: t 'a) (k: key): 'a
ensures { result = m.contents[k] }
val ghost function ([<-]) (m: t 'a) (k: key) (v: 'a): t 'a
ensures { result.contents = m.contents[k <- v] }
val ([]<-) (m: t 'a) (k: key) (v: 'a): unit
writes { m }
ensures { m = (old m)[k <- v] }
end
module BellmanFord
use Graph
use int.IntInf as D
use ref.Ref
clone set.SetImp as S with type elt = (vertex, vertex)
clone ImpmapNoDom with type key = vertex
type distmap = ImpmapNoDom.t D.t
let initialize_single_source (s: vertex): distmap
ensures { result = (create D.Infinite)[s <- D.Finite 0] }
=
let m = create D.Infinite in
m[s] <- D.Finite 0;
m
(* [inv1 m pass via] means that we already performed [pass-1] steps
of the main loop, and, in step [pass], we already processed edges
in [via] *)
predicate inv1 (m: distmap) (pass: int) (via: fset (vertex, vertex)) =
forall v: vertex. mem v vertices ->
match m[v] with
| D.Finite n ->
(* there exists a path of weight [n] *)
(exists l: list vertex. path s l v /\ path_weight l v = n) /\
(* there is no shorter path in less than [pass] steps *)
(forall l: list vertex.
path s l v -> length l < pass -> path_weight l v >= n) /\
(* and no shorter path in i steps with last edge in [via] *)
(forall u: vertex, l: list vertex.
path s l u -> length l < pass -> mem (u,v) via ->
path_weight l u + weight u v >= n)
| D.Infinite ->
(* any path has at least [pass] steps *)
(forall l: list vertex. path s l v -> length l >= pass) /\
(* [v] cannot be reached by [(u,v)] in [via] *)
(forall u: vertex. mem (u,v) via -> (*m[u] = D.Infinite*)
forall lu: list vertex. path s lu u -> length lu >= pass)
end
predicate inv2 (m: distmap) (via: fset (vertex, vertex)) =
forall u v: vertex. mem (u, v) via ->
D.le m[v] (D.add m[u] (D.Finite (weight u v)))
let rec lemma inv2_path (m: distmap) (y z: vertex) (l:list vertex) : unit
requires { inv2 m edges }
requires { path y l z }
ensures { D.le m[z] (D.add m[y] (D.Finite (path_weight l z))) }
variant { length l }
= match l with
| Nil -> ()
| Cons _ q ->
let hd = match q with
| Nil -> z
| Cons h _ ->
assert { path_weight l z = weight y h + path_weight q z };
assert { D.le m[h] (D.add m[y] (D.Finite (weight y h))) };
h
end in
inv2_path m hd z q
end
(* key lemma for non-existence of a negative cycle
Proof: let us assume a negative cycle reachable from s, that is
s --...--> x0 --w1--> x1 --w2--> x2 ... xn-1 --wn--> x0
with w1+w2+...+wn < 0.
Let di be the distance from s to xi as given by map m.
By [inv2 m edges] we have di-1 + wi >= di for all i.
Summing all such inequalities over the cycle, we get
w1+w2+...+wn >= 0
hence a contradiction. Qed. *)
lemma key_lemma_2:
forall m: distmap. inv1 m (cardinal vertices) empty -> inv2 m edges ->
forall v: vertex. not (negative_cycle v
so exists l1. path s l1 v
so exists l2. path v l2 v /\ path_weight l2 v < 0
so D.le m[v] (D.add m[v] (D.Finite (path_weight l2 v)))
)
let relax (m: distmap) (u v: vertex) (pass: int)
(ghost via: fset (vertex, vertex))
requires { 1 <= pass /\ mem (u, v) edges /\ not (mem (u, v) via) }
requires { inv1 m pass via }
ensures { inv1 m pass (add (u, v) via) }
= label I in
let n = D.add m[u] (D.Finite (weight u v)) in
if D.lt n m[v]
then begin
m[v] <- n;
assert { match (m at I)[u] with
| D.Infinite -> false
| D.Finite w0 ->
let w1 = w0 + weight u v in
n = D.Finite w1
&& (exists l. path s l v /\ path_weight l v = w1
by exists l2.
path s l2 u /\ path_weight l2 u = w0 /\ l = l2 ++ Cons u Nil
) && (forall l. path s l v /\ length l < pass -> path_weight l v >= w1
by match (m at I)[v] with
| D.Infinite -> false
| D.Finite w2 -> path_weight l v >= w2
end
) && (forall z l. path s l z /\ length l < pass ->
mem (z,v) (add (u,v) via) ->
path_weight l z + weight z v >= w1
by if z = u then path_weight l z >= w0
else match (m at I)[v] with
| D.Infinite -> false
| D.Finite w2 -> path_weight l z + weight z v >= w2
end
)
end
}
end else begin
assert { forall l w1. path s l u /\ length l < pass /\ m[v] = D.Finite w1 ->
path_weight l u + weight u v >= w1
by match m[u] with
| D.Infinite -> false
| D.Finite w0 -> path_weight l u >= w0
end
}
end
val get_edges (): S.set
ensures { result = edges }
exception NegativeCycle
let bellman_ford ()
ensures { forall v: vertex. mem v vertices ->
match result[v] with
| D.Finite n ->
(exists l: list vertex. path s l v /\ path_weight l v = n) /\
(forall l: list vertex. path s l v -> path_weight l v >= n
by all_path_gt v n)
| D.Infinite ->
(forall l: list vertex. not (path s l v))
end }
raises { NegativeCycle -> exists v: vertex. negative_cycle v }
= let m = initialize_single_source s in
for i = 1 to nb_vertices - 1 do
invariant { inv1 m i empty }
let es = get_edges () in
while not (S.is_empty es) do
invariant { subset es.S.to_fset edges /\ inv1 m i (diff edges es.S.to_fset) }
variant { S.cardinal es }
let ghost via = diff edges es.S.to_fset in
let (u, v) = S.choose_and_remove es in
relax m u v i via
done;
assert { inv1 m i edges }
done;
assert { inv1 m (cardinal vertices) empty };
let es = get_edges () in
while not (S.is_empty es) do
invariant { subset es.S.to_fset edges /\ inv2 m (diff edges es.S.to_fset) }
variant { S.cardinal es }
let (u, v) = S.choose_and_remove es in
if D.lt (D.add m[u] (D.Finite (weight u v))) m[v] then begin
assert { match m[u], m[v] with
| D.Infinite, _ -> false
| D.Finite _, D.Infinite -> false
by exists l2. path s l2 u
so let l = l2 ++ Cons u Nil in path s l v
so exists l. path s l v /\ length l < cardinal vertices
| D.Finite wu, D.Finite wv ->
(exists w. negative_cycle w)
by
all_path_gt v wv
so exists l2. path s l2 u /\ path_weight l2 u = wu
so let l = l2 ++ Cons u Nil in
path s l v /\ path_weight l v < wv
end
};
raise NegativeCycle
end
done;
assert { inv2 m edges };
assert { forall u. not (negative_cycle u) };
m
end