Files
why3/stdlib/fmap.mlw
2021-09-21 18:00:14 +02:00

218 lines
4.6 KiB
Plaintext

(** {1 Finite Maps} *)
(** {2 Polymorphic maps to be used in spec/ghost only} *)
module Fmap
use int.Int
use map.Map
use set.Fset as S
type fmap 'k 'v = abstract {
contents: 'k -> 'v;
domain: S.fset 'k;
}
meta coercion function contents
predicate (==) (m1 m2: fmap 'k 'v) =
S.(==) m1.domain m2.domain /\
forall k. S.mem k m1.domain -> m1[k] = m2[k]
axiom extensionality:
forall m1 m2: fmap 'k 'v. m1 == m2 -> m1 = m2
predicate mem (k: 'k) (m: fmap 'k 'v) =
S.mem k m.domain
predicate mapsto (k: 'k) (v: 'v) (m: fmap 'k 'v) =
mem k m /\ m[k] = v
lemma mem_mapsto:
forall k: 'k, m: fmap 'k 'v. mem k m -> mapsto k m[k] m
predicate is_empty (m: fmap 'k 'v) =
S.is_empty m.domain
function mk (d: S.fset 'k) (m: 'k -> 'v) : fmap 'k 'v
axiom mk_domain:
forall d: S.fset 'k, m: 'k -> 'v. domain (mk d m) = d
axiom mk_contents:
forall d: S.fset 'k, m: 'k -> 'v, k: 'k.
S.mem k d -> (mk d m)[k] = m[k]
constant empty: fmap 'k 'v
axiom is_empty_empty: is_empty (empty: fmap 'k 'v)
function add (k: 'k) (v: 'v) (m: fmap 'k 'v) : fmap 'k 'v
function ([<-]) (m: fmap 'k 'v) (k: 'k) (v: 'v) : fmap 'k 'v =
add k v m
(*FIXME? (add k v m).contents = m.contents[k <- v] *)
axiom add_contents_k:
forall k v, m: fmap 'k 'v. (add k v m)[k] = v
axiom add_contents_other:
forall k v, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (add k v m)[k1] = m[k1]
axiom add_domain:
forall k v, m: fmap 'k 'v. (add k v m).domain = S.add k m.domain
(* FIXME? find_opt (k: 'k) (m: fmap 'k 'v) : option 'v *)
function find (k: 'k) (m: fmap 'k 'v) : 'v
axiom find_def:
forall k, m: fmap 'k 'v. mem k m -> find k m = m[k]
function remove (k: 'k) (m: fmap 'k 'v) : fmap 'k 'v
axiom remove_contents:
forall k, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (remove k m)[k1] = m[k1]
axiom remove_domain:
forall k, m: fmap 'k 'v. (remove k m).domain = S.remove k m.domain
function size (m: fmap 'k 'v) : int =
S.cardinal m.domain
end
(** {2 Finite monomorphic maps to be used in programs only}
A program function `eq` deciding equality on the `key` type must be provided when cloned.
*)
(** {3 Applicative maps} *)
module MapApp
use int.Int
use map.Map
use export Fmap
type key
(* we enforce type `key` to have a decidable equality
by requiring the following function *)
val eq (x y: key) : bool
ensures { result <-> x = y }
type t 'v = abstract {
to_fmap: fmap key 'v;
}
meta coercion function to_fmap
val create () : t 'v
ensures { result.to_fmap = empty }
val mem (k: key) (m: t 'v) : bool
ensures { result <-> mem k m }
val is_empty (m: t 'v) : bool
ensures { result <-> is_empty m }
val add (k: key) (v: 'v) (m: t 'v) : t 'v
ensures { result = add k v m }
val find (k: key) (m: t 'v) : 'v
requires { mem k m }
ensures { result = m[k] }
ensures { result = find k m }
use ocaml.Exceptions
val find_exn (k: key) (m: t 'v) : 'v
ensures { S.mem k m.domain }
ensures { result = m[k] }
raises { Not_found -> not (S.mem k m.domain) }
val remove (k: key) (m: t 'v) : t 'v
ensures { result = remove k m }
val size (m: t 'v) : int
ensures { result = size m }
end
(** {3 Applicative maps of integers} *)
module MapAppInt
use int.Int
clone export MapApp with type key = int, val eq = Int.(=), axiom .
end
(** {3 Imperative maps} *)
module MapImp
use int.Int
use map.Map
use export Fmap
type key
val eq (x y: key) : bool
ensures { result <-> x = y }
type t 'v = abstract {
mutable to_fmap: fmap key 'v;
}
meta coercion function to_fmap
val create () : t 'v
ensures { result.to_fmap = empty }
val mem (k: key) (m: t 'v) : bool
ensures { result <-> mem k m }
val is_empty (m: t 'v) : bool
ensures { result <-> is_empty m }
val add (k: key) (v: 'v) (m: t 'v) : unit
writes { m }
ensures { m = add k v (old m) }
val find (k: key) (m: t 'v) : 'v
requires { mem k m }
ensures { result = m[k] }
ensures { result = find k m }
use ocaml.Exceptions
val find_exn (k: key) (m: t 'v) : 'v
ensures { S.mem k m.domain }
ensures { result = m[k] }
raises { Not_found -> not (S.mem k m.domain) }
val remove (k: key) (m: t 'v) : unit
writes { m }
ensures { m = remove k (old m) }
val size (m: t 'v) : int
ensures { result = size m }
val clear (m: t 'v) : unit
writes { m }
ensures { m = empty }
end
(** {3 Imperative maps of integers} *)
module MapImpInt
use int.Int
clone export MapImp with type key = int, val eq = Int.(=), axiom .
end