Files
why3/stdlib/map.mlw
Jean-Christophe Filliatre 21a4cfe144 no more theory sum.Sum
it is subsumed by theory int.Sum
theories map.MapSum and array.ArraySum now use int.Sum
2020-02-12 10:30:25 +01:00

225 lines
5.4 KiB
Plaintext

(** {1 Theory of maps} *)
(** {2 Generic Maps} *)
module Map
type map 'a 'b = 'a -> 'b
let function get (f: map 'a 'b) (x: 'a) : 'b = f x
let ghost function set (f: map 'a 'b) (x: 'a) (v: 'b) : map 'a 'b =
fun y -> if pure {y = x} then v else f y
(** syntactic sugar *)
let function ([]) (f: map 'a 'b) (x: 'a) : 'b = f x
let ghost function ([<-]) (f: map 'a 'b) (x: 'a) (v: 'b) : map 'a 'b = set f x v
end
module Const
use Map
let function const (v: 'b) : map 'a 'b = fun _ -> v
end
module MapExt
predicate (==) (m1 m2: 'a -> 'b) = forall x: 'a. m1 x = m2 x
lemma extensionality:
forall m1 m2: 'a -> 'b. m1 == m2 -> m1 = m2
(* This lemma is actually provable in Why3, because of how
eliminate_epsilon handles equality to a lambda-term. *)
end
(** {2 Sorted Maps (indexed by integers)} *)
module MapSorted
use int.Int
use Map
type elt
predicate le elt elt
predicate sorted_sub (a : map int elt) (l u : int) =
forall i1 i2 : int. l <= i1 <= i2 < u -> le a[i1] a[i2]
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
end
(** {2 Maps Equality (indexed by integers)} *)
module MapEq
use int.Int
use Map
predicate map_eq_sub (a1 a2 : map int 'a) (l u : int) =
forall i:int. l <= i < u -> a1[i] = a2[i]
end
module MapExchange
use int.Int
use Map
predicate exchange (a1 a2: map int 'a) (l u i j: int) =
l <= i < u /\ l <= j < u /\
a1[i] = a2[j] /\ a1[j] = a2[i] /\
(forall k:int. l <= k < u -> k <> i -> k <> j -> a1[k] = a2[k])
lemma exchange_set :
forall a: map int 'a, l u i j: int.
l <= i < u -> l <= j < u ->
exchange a a[i <- a[j]][j <- a[i]] l u i j
end
(** {2 Sum of elements of a map (indexed by integers)} *)
module MapSum
use int.Int
use int.Sum as S
use Map
(** `sum m l h` is the sum of `m[i]` for `l <= i < h` *)
function sum (m: map int int) (l h: int) : int = S.sum (get m) l h
end
(** {2 Number of occurrences} *)
(* TODO: we could define Occ using theory int.NumOf *)
module Occ
use int.Int
use Map
function occ (v: 'a) (m: map int 'a) (l u: int) : int
(** number of occurrences of `v` in `m` between `l` included and `u` excluded *)
axiom occ_empty:
forall v: 'a, m: map int 'a, l u: int.
u <= l -> occ v m l u = 0
axiom occ_right_no_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[u-1] <> v -> occ v m l u = occ v m l (u-1)
axiom occ_right_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[u-1] = v -> occ v m l u = 1 + occ v m l (u-1)
lemma occ_left_no_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[l] <> v -> occ v m l u = occ v m (l+1) u
lemma occ_left_add:
forall v: 'a, m: map int 'a, l u: int.
l < u -> m[l] = v -> occ v m l u = 1 + occ v m (l+1) u
lemma occ_bounds:
forall v: 'a, m: map int 'a, l u: int.
l <= u -> 0 <= occ v m l u <= u - l
(* direct when l>=u, by induction on u when l <= u *)
lemma occ_append:
forall v: 'a, m: map int 'a, l mid u: int.
l <= mid <= u -> occ v m l u = occ v m l mid + occ v m mid u
(* by induction on u *)
lemma occ_neq:
forall v: 'a, m: map int 'a, l u: int.
(forall i: int. l <= i < u -> m[i] <> v) -> occ v m l u = 0
(* by induction on u *)
lemma occ_exists:
forall v: 'a, m: map int 'a, l u: int.
occ v m l u > 0 -> exists i: int. l <= i < u /\ m[i] = v
lemma occ_pos:
forall m: map int 'a, l u i: int.
l <= i < u -> occ m[i] m l u > 0
lemma occ_eq:
forall v: 'a, m1 m2: map int 'a, l u: int.
(forall i: int. l <= i < u -> m1[i] = m2[i]) -> occ v m1 l u = occ v m2 l u
(* by induction on u *)
lemma occ_exchange :
forall m: map int 'a, l u i j: int, x y z: 'a.
l <= i < u -> l <= j < u -> i <> j ->
occ z m[i <- x][j <- y] l u =
occ z m[i <- y][j <- x] l u
end
module MapPermut
use int.Int
use Map
use Occ
predicate permut (m1 m2: map int 'a) (l u: int) =
forall v: 'a. occ v m1 l u = occ v m2 l u
lemma permut_trans: (* provable, yet useful *)
forall a1 a2 a3 : map int 'a. forall l u : int.
permut a1 a2 l u -> permut a2 a3 l u -> permut a1 a3 l u
lemma permut_exists :
forall a1 a2: map int 'a, l u i: int.
permut a1 a2 l u -> l <= i < u ->
exists j: int. l <= j < u /\ a1[j] = a2[i]
end
(** {2 Injectivity and surjectivity for maps (indexed by integers)} *)
module MapInjection
use int.Int
use export Map
predicate injective (a: map int int) (n: int) =
forall i j: int. 0 <= i < n -> 0 <= j < n -> i <> j -> a[i] <> a[j]
(** `injective a n` is true when `a` is an injection
on the domain `(0..n-1)` *)
predicate surjective (a: map int int) (n: int) =
forall i: int. 0 <= i < n -> exists j: int. (0 <= j < n /\ a[j] = i)
(** `surjective a n` is true when `a` is a surjection
from `(0..n-1)` to `(0..n-1)` *)
predicate range (a: map int int) (n: int) =
forall i: int. 0 <= i < n -> 0 <= a[i] < n
(** `range a n` is true when `a` maps the domain
`(0..n-1)` into `(0..n-1)` *)
lemma injective_surjective:
forall a: map int int, n: int.
injective a n -> range a n -> surjective a n
(** main lemma: an injection on `(0..n-1)` that
ranges into `(0..n-1)` is also a surjection *)
use Occ
lemma injection_occ:
forall m: map int int, n: int.
injective m n <-> forall v:int. (occ v m 0 n <= 1)
end