(** {1 Sequences} This file provides a basic theory of sequences. *) (** {2 Sequences and basic operations} *) module Seq use int.Int (** the polymorphic type of sequences *) type seq 'a (** `seq 'a` is an infinite type *) meta "infinite_type" type seq val function length (seq 'a) : int axiom length_nonnegative: forall s: seq 'a. 0 <= length s meta "remove_unused:dependency" axiom length_nonnegative, function length val function get (seq 'a) int : 'a (* FIXME requires { 0 <= i < length s } *) (** `get s i` is the `i+1`-th element of sequence `s` (the first element has index 0) *) let function ([]) (s: seq 'a) (i: int) : 'a = get s i (** equality is extensional *) val predicate (==) (s1 s2: seq 'a) ensures { result <-> length s1 = length s2 && forall i: int. 0 <= i < length s1 -> s1[i] = s2[i] } ensures { result -> s1 = s2 } meta "extensionality" predicate (==) (** sequence comprehension *) val function create (len: int) (f: int -> 'a) : seq 'a requires { 0 <= len } ensures { length result = len } ensures { forall i. 0 <= i < len -> result[i] = f i } (*** FIXME: could be defined, but let constant does not accept spec. *) (*** let constant empty : seq 'a ensures { length result = 0 } = while false do variant { 0 } () done; create 0 (fun _ requires { false } -> absurd) *) (** empty sequence *) val constant empty : seq 'a ensures { length result = 0 } (** `set s i v` is a new sequence `u` such that `u[i] = v` and `u[j] = s[j]` otherwise *) let function set (s:seq 'a) (i:int) (v:'a) : seq 'a requires { 0 <= i < length s } ensures { length result = length s } ensures { result[i] = v } ensures { forall j. 0 <= j < length s /\ j <> i -> result[j] = s[j] } = while false do variant { 0 } () done; create s.length (fun j -> if j = i then v else s[j]) (* FIXME: not a real alias because of spec, but should be. *) let function ([<-]) (s: seq 'a) (i: int) (v: 'a) : seq 'a requires { 0 <= i < length s } = set s i v (** singleton sequence *) let function singleton (v:'a) : seq 'a ensures { length result = 1 } ensures { result[0] = v } = while false do variant { 0 } () done; create 1 (fun _ -> v) (** insertion of elements on both sides *) let function cons (x:'a) (s:seq 'a) : seq 'a ensures { length result = 1 + length s } ensures { result[0] = x } ensures { forall i. 0 < i <= length s -> result[i] = s[i-1] } = while false do variant { 0 } () done; create (1 + length s) (fun i -> if i = 0 then x else s[i-1]) let function snoc (s:seq 'a) (x:'a) : seq 'a ensures { length result = 1 + length s } ensures { result[length s] = x } ensures { forall i. 0 <= i < length s -> result[i] = s[i] } = while false do variant { 0 } () done; create (1 + length s) (fun i -> if i = length s then x else s[i]) (** `s[i..j]` is the sub-sequence of `s` from element `i` included to element `j` excluded *) let function ([..]) (s:seq 'a) (i:int) (j:int) : seq 'a requires { 0 <= i <= j <= length s } ensures { length result = j - i } ensures { forall k. 0 <= k < j - i -> result[k] = s[i + k] } = while false do variant { 0 } () done; create (j-i) (fun k -> s[i+k]) (* FIXME: spec/alias *) let function ([_..]) (s: seq 'a) (i: int) : seq 'a requires { 0 <= i <= length s } = s[i .. length s] (* FIXME: spec/alias *) let function ([.._]) (s: seq 'a) (j: int) : seq 'a requires { 0 <= j <= length s } = s[0 .. j] (** concatenation *) let function (++) (s1:seq 'a) (s2:seq 'a) : seq 'a ensures { length result = length s1 + length s2 } ensures { forall i. 0 <= i < length s1 -> result[i] = s1[i] } ensures { forall i. length s1 <= i < length result -> result[i] = s2[i - length s1] } = while false do variant { 0 } () done; let l = length s1 in create (l + length s2) (fun i -> if i < l then s1[i] else s2[i-l]) end (** {2 Lemma library about algebraic interactions between `empty`/`singleton`/`cons`/`snoc`/`++`/`[ .. ]`} *) module FreeMonoid use int.Int use Seq (* Monoidal properties/simplification. *) let lemma associative (s1 s2 s3:seq 'a) ensures { s1 ++ (s2 ++ s3) = (s1 ++ s2) ++ s3 } = if not (s1 ++ s2) ++ s3 == s1 ++ (s2 ++ s3) then absurd meta rewrite axiom associative meta "remove_unused:dependency" axiom associative, function (++) let lemma left_neutral (s:seq 'a) ensures { empty ++ s = s } = if not empty ++ s == s then absurd meta rewrite axiom left_neutral meta "remove_unused:dependency" axiom left_neutral, function (++) let lemma right_neutral (s:seq 'a) ensures { s ++ empty = s } = if not s ++ empty == s then absurd meta rewrite axiom right_neutral meta "remove_unused:dependency" axiom right_neutral, function (++) let lemma cons_def (x:'a) (s:seq 'a) ensures { cons x s = singleton x ++ s } = if not cons x s == singleton x ++ s then absurd meta rewrite axiom cons_def meta "remove_unused:dependency" axiom cons_def, function cons let lemma snoc_def (s:seq 'a) (x:'a) ensures { snoc s x = s ++ singleton x } = if not snoc s x == s ++ singleton x then absurd meta rewrite axiom snoc_def meta "remove_unused:dependency" axiom snoc_def, function snoc let lemma double_sub_sequence (s:seq 'a) (i j k l:int) requires { 0 <= i <= j <= length s } requires { 0 <= k <= l <= j - i } ensures { s[i .. j][k .. l] = s[k+i .. l+i] } = if not s[i .. j][k .. l] == s[k+i .. l+i] then absurd (* Inverting cons/snoc/catenation *) let lemma cons_back (x:'a) (s:seq 'a) ensures { (cons x s)[1 ..] = s } = if not (cons x s)[1 ..] == s then absurd meta "remove_unused:dependency" axiom cons_back, function cons let lemma snoc_back (s:seq 'a) (x:'a) ensures { (snoc s x)[.. length s] = s } = if not (snoc s x)[.. length s] == s then absurd meta "remove_unused:dependency" axiom snoc_back, function snoc let lemma cat_back (s1 s2:seq 'a) ensures { (s1 ++ s2)[.. length s1] = s1 } ensures { (s1 ++ s2)[length s1 ..] = s2 } = let c = s1 ++ s2 in let l = length s1 in if not (c[.. l] == s1 || c[l ..] == s2) then absurd meta "remove_unused:dependency" axiom cat_back, function (++) (* Decomposing sequences as cons/snoc/catenation/empty/singleton *) let lemma cons_dec (s:seq 'a) requires { length s >= 1 } ensures { s = cons s[0] s[1 ..] } = if not s == cons s[0] s[1 ..] then absurd meta "remove_unused:dependency" axiom cons_dec, function cons let lemma snoc_dec (s:seq 'a) requires { length s >= 1 } ensures { s = snoc s[.. length s - 1] s[length s - 1] } = if not s == snoc s[.. length s - 1] s[length s - 1] then absurd meta "remove_unused:dependency" axiom snoc_dec, function snoc let lemma cat_dec (s:seq 'a) (i:int) requires { 0 <= i <= length s } ensures { s = s[.. i] ++ s[i ..] } = if not s == s[.. i] ++ s[i ..] then absurd meta "remove_unused:dependency" axiom cat_dec, function (++) let lemma empty_dec (s:seq 'a) requires { length s = 0 } ensures { s = empty } = if not s == empty then absurd meta "remove_unused:dependency" axiom empty_dec, function empty let lemma singleton_dec (s:seq 'a) requires { length s = 1 } ensures { s = singleton s[0] } = if not s == singleton s[0] then absurd meta "remove_unused:dependency" axiom singleton_dec, function singleton end module ToList use int.Int use Seq use list.List val function to_list (a: seq 'a) : list 'a axiom to_list_empty: to_list (empty: seq 'a) = (Nil: list 'a) axiom to_list_cons: forall s: seq 'a. 0 < length s -> to_list s = Cons s[0] (to_list s[1 ..]) use list.Length as ListLength lemma to_list_length: forall s: seq 'a. ListLength.length (to_list s) = length s use list.Nth as ListNth use option.Option lemma to_list_nth: forall s: seq 'a, i: int. 0 <= i < length s -> ListNth.nth i (to_list s) = Some s[i] let rec lemma to_list_def_cons (s: seq 'a) (x: 'a) variant { length s } ensures { to_list (cons x s) = Cons x (to_list s) } = assert { (cons x s)[1 ..] == s } end module OfList use int.Int use option.Option use list.List use list.Length as L use list.Nth use Seq use list.Append let rec function of_list (l: list 'a) : seq 'a = match l with | Nil -> empty | Cons x r -> cons x (of_list r) end lemma length_of_list: forall l: list 'a. length (of_list l) = L.length l predicate point_wise (s: seq 'a) (l: list 'a) = forall i. 0 <= i < L.length l -> Some (get s i) = nth i l lemma elts_seq_of_list: forall l: list 'a. point_wise (of_list l) l lemma is_of_list: forall l: list 'a, s: seq 'a. L.length l = length s -> point_wise s l -> s == of_list l let rec lemma of_list_app (l1 l2: list 'a) ensures { of_list (l1 ++ l2) == Seq.(++) (of_list l1) (of_list l2) } variant { l1 } = match l1 with | Nil -> () | Cons _ r -> of_list_app r l2 end lemma of_list_app_length: forall l1 [@induction] l2: list 'a. length (of_list (l1 ++ l2)) = L.length l1 + L.length l2 let rec lemma of_list_snoc (l: list 'a) (x: 'a) variant { l } ensures { of_list (l ++ Cons x Nil) == snoc (of_list l) x } = match l with | Nil -> assert { snoc empty x = cons x empty } | Cons _ r -> of_list_snoc r x; end meta coercion function of_list use ToList lemma convolution_to_of_list: forall l: list 'a. to_list (of_list l) = l end module Mem use int.Int use Seq predicate mem (x: 'a) (s: seq 'a) = exists i: int. 0 <= i < length s && s[i] = x lemma mem_append : forall x: 'a, s1 s2. mem x (s1 ++ s2) <-> mem x s1 \/ mem x s2 lemma mem_tail: forall x: 'a, s. length s > 0 -> mem x s <-> (x = s[0] \/ mem x s[1 .. ]) end module Distinct use int.Int use Seq predicate distinct (s : seq 'a) = forall i j. 0 <= i < length s -> 0 <= j < length s -> i <> j -> s[i] <> s[j] end module Reverse use int.Int use Seq let function reverse (s: seq 'a) : seq 'a = create (length s) (fun i -> s[length s - 1 - i]) end module ToFset use int.Int use set.Fset use Mem use Seq val function to_set (s: seq 'a) : fset 'a axiom to_set_empty: to_set (empty: seq 'a) = (Fset.empty: fset 'a) axiom to_set_add: forall s: seq 'a. length s > 0 -> to_set s = add s[0] (to_set s[1 ..]) lemma to_set_cardinal: forall s: seq 'a. cardinal (to_set s) <= length s lemma to_set_mem: forall s: seq 'a, e: 'a. mem e s <-> Fset.mem e (to_set s) lemma to_set_snoc: forall s: seq 'a, x: 'a. to_set (snoc s x) = add x (to_set s) use Distinct lemma to_set_cardinal_distinct: forall s: seq 'a. distinct s -> cardinal (to_set s) = length s end (** {2 Sorted Sequences} *) module Sorted use int.Int use Seq type t predicate le t t clone relations.TotalPreOrder as TO with type t = t, predicate rel = le, axiom . predicate sorted_sub (s: seq t) (l u: int) = forall i1 i2. l <= i1 <= i2 < u -> le s[i1] s[i2] (** `sorted_sub s l u` is true whenever the sub-sequence `s[l .. u-1]` is sorted w.r.t. order relation `le` *) predicate sorted (s: seq t) = sorted_sub s 0 (length s) (** `sorted s` is true whenever the sequence `s` is sorted w.r.t `le` *) lemma sorted_cons: forall x: t, s: seq t. (forall i: int. 0 <= i < length s -> le x s[i]) /\ sorted s <-> sorted (cons x s) lemma sorted_append: forall s1 s2: seq t. (sorted s1 /\ sorted s2 /\ (forall i j: int. 0 <= i < length s1 /\ 0 <= j < length s2 -> le s1[i] s2[j])) <-> sorted (s1 ++ s2) lemma sorted_snoc: forall x: t, s: seq t. (forall i: int. 0 <= i < length s -> le s[i] x) /\ sorted s <-> sorted (snoc s x) end module SortedInt (** sorted sequences of integers *) use int.Int clone export Sorted with type t = int, predicate le = (<=), goal . end module Sum use int.Int use Seq use int.Sum as S function sum (f: 'a -> int) (s: seq 'a) : int = S.sum (fun i -> f s[i]) 0 (length s) lemma sum_cons: forall f: 'a -> int, x: 'a, s: seq 'a. sum f (cons x s) = f x + sum f s lemma sum_snoc: forall f: 'a -> int, s: seq 'a, x: 'a. sum f (snoc s x) = sum f s + f x lemma sum_append: forall f: 'a -> int, s1 s2: seq 'a. sum f (s1 ++ s2) = sum f s1 + sum f s2 end module SumInt use int.Int use Seq use int.Sum as S function sum (s: seq int) : int = S.sum (fun i -> s[i]) 0 (length s) lemma sum_snoc: forall s x. sum (snoc s x) = sum s + x lemma sum_tail: forall s. length s >= 1 -> sum s = s[0] + sum s[1 .. ] lemma sum_tail_tail: forall s. length s >= 2 -> sum s = s[0] + s[1] + sum s[2 .. ] end (** {2 Number of occurrences in a sequence} *) module Occ use int.Int use int.NumOf as N use Seq function iseq (x: 'a) (s: seq 'a) : int->bool = fun i -> s[i] = x function occ (x: 'a) (s: seq 'a) (l u: int) : int = N.numof (iseq x s) l u function occ_all (x: 'a) (s: seq 'a) : int = occ x s 0 (length s) lemma occ_cons: forall k: 'a, s: seq 'a, x: 'a. (occ_all k (cons x s) = if k = x then 1 + occ_all k s else occ_all k s ) by (cons x s == (cons x empty) ++ s) lemma occ_snoc: forall k: 'a, s: seq 'a, x: 'a. occ_all k (snoc s x) = if k = x then 1 + occ_all k s else occ_all k s lemma occ_tail: forall k: 'a, s: seq 'a. length s > 0 -> (occ_all k s[1..] = if k = s[0] then (occ_all k s) - 1 else occ_all k s ) by (s == cons s[0] s[1..]) lemma append_num_occ: forall x: 'a, s1 s2: seq 'a. occ_all x (s1 ++ s2) = occ_all x s1 + occ_all x s2 end (** {2 Sequences Equality} *) module SeqEq use int.Int use Seq predicate seq_eq_sub (s1 s2: seq 'a) (l u: int) = forall i. l <= i < u -> s1[i] = s2[i] end module Exchange use int.Int use Seq predicate exchange (s1 s2: seq 'a) (i j: int) = length s1 = length s2 /\ 0 <= i < length s1 /\ 0 <= j < length s1 /\ s1[i] = s2[j] /\ s1[j] = s2[i] /\ (forall k:int. 0 <= k < length s1 -> k <> i -> k <> j -> s1[k] = s2[k]) lemma exchange_set : forall s: seq 'a, i j: int. 0 <= i < length s -> 0 <= j < length s -> exchange s s[i <- s[j]][j <- s[i]] i j end (** {2 Permutation of sequences} *) module Permut use int.Int use Seq use Occ use SeqEq use export Exchange predicate permut (s1 s2: seq 'a) (l u: int) = length s1 = length s2 /\ 0 <= l <= length s1 /\ 0 <= u <= length s1 /\ forall v: 'a. occ v s1 l u = occ v s2 l u (** `permut s1 s2 l u` is true when the segment `s1[l..u-1]` is a permutation of the segment `s2[l..u-1]`. Values outside this range are ignored. *) predicate permut_sub (s1 s2: seq 'a) (l u: int) = seq_eq_sub s1 s2 0 l /\ permut s1 s2 l u /\ seq_eq_sub s1 s2 u (length s1) (** `permut_sub s1 s2 l u` is true when the segment `s1[l..u-1]` is a permutation of the segment `s2[l..u-1]` and values outside this range are equal. *) predicate permut_all (s1 s2: seq 'a) = length s1 = length s2 /\ permut s1 s2 0 (length s1) (** `permut_all s1 s2` is true when sequence `s1` is a permutation of sequence `s2` *) lemma exchange_permut_sub: forall s1 s2: seq 'a, i j l u: int. exchange s1 s2 i j -> l <= i < u -> l <= j < u -> 0 <= l -> u <= length s1 -> permut_sub s1 s2 l u (** enlarge the interval *) lemma Permut_sub_weakening: forall s1 s2: seq 'a, l1 u1 l2 u2: int. permut_sub s1 s2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length s1 -> permut_sub s1 s2 l2 u2 (** {3 Lemmas about permut} *) lemma permut_refl: forall s: seq 'a, l u: int. 0 <= l <= length s -> 0 <= u <= length s -> permut s s l u lemma permut_sym: forall s1 s2: seq 'a, l u: int. permut s1 s2 l u -> permut s2 s1 l u lemma permut_trans: forall s1 s2 s3: seq 'a, l u: int. permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u lemma permut_exists: forall s1 s2: seq 'a, l u i: int. permut s1 s2 l u -> l <= i < u -> exists j: int. l <= j < u /\ s1[j] = s2[i] (** {3 Lemmas about permut_all} *) use Mem lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 -> forall x. mem x s1 <-> mem x s2 lemma exchange_permut_all: forall s1 s2: seq 'a, i j: int. exchange s1 s2 i j -> permut_all s1 s2 end module FoldLeft use Seq use int.Int (** `fold_left f a [b1; ...; bn]` is `f (... (f (f a b1) b2) ...) bn` *) let rec function fold_left (f: 'a -> 'b -> 'a) (acc: 'a) (s: seq 'b) : 'a variant { length s } = if length s = 0 then acc else fold_left f (f acc s[0]) s[1 ..] lemma fold_left_ext: forall f: 'b -> 'a -> 'b, acc: 'b, s1 s2: seq 'a. s1 == s2 -> fold_left f acc s1 = fold_left f acc s2 lemma fold_left_cons: forall s: seq 'a, x: 'a, f: 'b -> 'a -> 'b, acc: 'b. fold_left f acc (cons x s) = fold_left f (f acc x) s let rec lemma fold_left_app (s1 s2: seq 'a) (f: 'b -> 'a -> 'b) (acc: 'b) ensures { fold_left f acc (s1 ++ s2) = fold_left f (fold_left f acc s1) s2 } variant { Seq.length s1 } = if Seq.length s1 > 0 then fold_left_app s1[1 ..] s2 f (f acc (Seq.get s1 0)) end module FoldRight use Seq use int.Int (** `fold_right f [a1; ...; an] b` is `f a1 (f a2 (... (f an b) ...))` *) let rec function fold_right (f: 'b -> 'a -> 'a) (s: seq 'b) (acc: 'a) : 'a variant { length s } = if length s = 0 then acc else let acc = f s[length s - 1] acc in fold_right f s[.. length s - 1] acc lemma fold_right_ext: forall f: 'a -> 'b -> 'b, acc: 'b, s1 s2: seq 'a. s1 == s2 -> fold_right f s1 acc = fold_right f s2 acc lemma fold_right_snoc: forall s: seq 'a, x: 'a, f: 'a -> 'b -> 'b, acc: 'b. fold_right f (snoc s x) acc = fold_right f s (f x acc) end (*** TODO / TO DISCUSS - what about s[i..j] when i..j is not a valid range? left undefined? empty sequence? - what about negative index e.g. s[-3..] for the last three elements? - a syntax for cons and snoc? - create: better name? move to a separate theory? - UNPLEASANT: we cannot write s[1..] because 1. is recognized as a float so we have to write s[1 ..] - UNPLEASANT: when using both arrays and sequences, the lack of overloading is a pain; see for instance vstte12_ring_buffer.mlw *)