(********************************************************************) (* *) (* The Why3 Verification Platform / The Why3 Development Team *) (* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *) (* *) (* This software is distributed under the terms of the GNU Lesser *) (* General Public License version 2.1, with the special exception *) (* on linking described in file LICENSE. *) (********************************************************************) (* This file is generated by Why3's Coq-realize driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. Require HighOrd. Require Import ClassicalEpsilon. Lemma function_extensionality: forall A B (f g : A -> B), (forall x, f x = g x) -> f = g. Admitted. (* Why3 assumption *) Definition infix_eqeq {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} (m1:a -> b) (m2:a -> b) : Prop := forall (x:a), ((m1 x) = (m2 x)). Notation "x == y" := (infix_eqeq x y) (at level 70, no associativity). (* Why3 goal *) Lemma extensionality {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b} : forall (m1:a -> b) (m2:a -> b), infix_eqeq m1 m2 -> (m1 = m2). Proof. intros m1 m2 h1. apply function_extensionality. intros x. generalize (h1 x). easy. Qed.