(** Computing the height of a tree in CPS style (author: Jean-Christophe Filliâtre) *) module HeightCPS use int.Int use int.MinMax use bintree.Tree use bintree.Height let rec height_cps (t: tree 'a) (k: int -> 'b) : 'b variant { t } ensures { result = k (height t) } = match t with | Empty -> k 0 | Node l _ r -> height_cps l (fun hl -> height_cps r (fun hr -> k (1 + max hl hr))) end let height (t: tree 'a) : int ensures { result = height t } = height_cps t (fun h -> h) end (** with a while loop, manually obtained by compiling out recursion *) module Iteration use int.Int use int.MinMax use list.List use bintree.Tree use bintree.Size use bintree.Height use ref.Ref type cont 'a = Id | Kleft (tree 'a) (cont 'a) | Kright int (cont 'a) type what 'a = Argument (tree 'a) | Result int let predicate is_id (k: cont 'a) = match k with Id -> true | _ -> false end let predicate is_result (w: what 'a) = match w with Result _ -> true | _ -> false end function evalk (k: cont 'a) (r: int) : int = match k with | Id -> r | Kleft l k -> evalk k (1 + max (height l) r) | Kright x k -> evalk k (1 + max x r) end function evalw (w: what 'a) : int = match w with | Argument t -> height t | Result x -> x end function sizek (k: cont 'a) : int = match k with | Id -> 0 | Kleft t k -> 3 + 4 * size t + sizek k | Kright _ k -> 1 + sizek k end lemma sizek_nonneg: forall k: cont 'a. sizek k >= 0 function sizew (w: what 'a) : int = match w with | Argument t -> 1 + 4 * size t | Result _ -> 0 end lemma helper1: forall t: tree 'a. 4 * size t >= 0 lemma sizew_nonneg: forall w: what 'a. sizew w >= 0 let height1 (t: tree 'a) : int ensures { result = height t } = let w = ref (Argument t) in let k = ref Id in while not (is_id !k && is_result !w) do invariant { evalk !k (evalw !w) = height t } variant { sizek !k + sizew !w } match !w, !k with | Argument Empty, _ -> w := Result 0 | Argument (Node l _ r), _ -> w := Argument l; k := Kleft r !k | Result _, Id -> absurd | Result v, Kleft r k0 -> w := Argument r; k := Kright v k0 | Result v, Kright hl k0 -> w := Result (1 + max hl v); k := k0 end done; match !w with Result r -> r | _ -> absurd end end (** Computing the height of a tree with an explicit stack (code: Andrei Paskevich / proof: Jean-Christophe Filliâtre) *) module HeightStack use int.Int use int.MinMax use list.List use bintree.Tree use bintree.Size use bintree.Height type stack 'a = list (int, tree 'a) function heights (s: stack 'a) : int = match s with | Nil -> 0 | Cons (h, t) s' -> max (h + height t) (heights s') end function sizes (s: stack 'a) : int = match s with | Nil -> 0 | Cons (_, t) s' -> size t + sizes s' end lemma sizes_nonneg: forall s: stack 'a. sizes s >= 0 let rec height_stack (m: int) (s: stack 'a) : int requires { m >= 0 } variant { sizes s, s } ensures { result = max m (heights s) } = match s with | Nil -> m | Cons (h, Empty) s' -> height_stack (max m h) s' | Cons (h, Node l _ r) s' -> height_stack m (Cons (h+1,l) (Cons (h+1,r) s')) end let height1 (t: tree 'a) : int ensures { result = height t } = height_stack 0 (Cons (0, t) Nil) end (** Computing the height of a tree with a small amount of memory: Stack size is only proportional to the logarithm of the tree size. (author: Martin Clochard) *) module HeightSmallSpace use int.Int use int.MinMax use int.ComputerDivision use option.Option use bintree.Tree use bintree.Size use bintree.Height (** Count number of leaves in a tree. *) function leaves (t: tree 'a) : int = 1 + size t (** `height_limited acc depth lim t`: Compute the `height t` if the number of leaves in `t` is at most `lim`, fails otherwise. `acc` and `depth` are accumulators. For maintaining the limit within the recursion, this routine also send back the difference between the number of leaves and the limit in case of success. Method: find out one child with number of leaves at most `lim/2` using recursive calls. If no such child is found, the tree has at least `lim+1` leaves, hence fails. Otherwise, accumulate the result of the recursive call for that child and make a recursive tail-call for the other child, using the computed difference in order to update `lim`. Since non-tail-recursive calls halve the limit, the space complexity is logarithmic in `lim`. Note that as is, this has a degenerate case: if the small child is extremely small, we may waste a lot of computing time on the large child to notice it is large, while in the end processing only the small child until the tail-recursive call. Analysis shows that this results in super-polynomial time behavior (recursion T(N) = T(N/2)+T(N-1)) To mitigate this, we perform recursive calls on all `lim/2^k` limits in increasing order (see process_small_child subroutine), until one succeed or maximal limits both fails. This way, the time spent by a single phase of the algorithm is representative of the size of the processed set of nodes. Time complexity: open *) let rec height_limited (acc depth lim: int) (t:tree 'a) : option (int,int) requires { 0 < lim /\ 0 <= acc } returns { None -> leaves t > lim | Some (res,dl) -> res = max acc (depth + height t) /\ lim = leaves t + dl /\ 0 <= dl } variant { lim } = match t with | Empty -> Some (max acc depth,lim-1) | Node l _ r -> let rec process_small_child (limc: int) : option (int,int,tree 'a) requires { 0 <= limc < lim } returns { None -> leaves l > limc /\ leaves r > limc | Some (h,sz,rm) -> height t = 1 + max h (height rm) /\ leaves t = leaves rm + sz /\ 0 < sz <= limc } variant { limc } = if limc = 0 then None else match process_small_child (div limc 2) with | (Some _) as s -> s | None -> match height_limited 0 0 limc l with | Some (h,dl) -> Some (h,limc-dl,r) | None -> match height_limited 0 0 limc r with | Some (h,dl) -> Some (h,limc-dl,l) | None -> None end end end in let limc = div lim 2 in match process_small_child limc with | None -> None | Some (h,sz,rm) -> height_limited (max acc (depth + h + 1)) (depth+1) (lim-sz) rm end end use ref.Ref let height (t: tree 'a) : int ensures { result = height t } = let lim = ref 1 in while true do invariant { !lim > 0 } variant { leaves t - !lim } match height_limited 0 0 !lim t with | None -> lim := !lim * 2 | Some (h,_) -> return h end done; absurd end