mirror of
https://github.com/AdaCore/why3.git
synced 2026-02-12 12:34:55 -08:00
update sessions
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
(* This file is generated by Why3's Coq driver *)
|
||||
(* This file is generated by Why3's Coq 8.4 driver *)
|
||||
(* Beware! Only edit allowed sections below *)
|
||||
Require Import BuiltIn.
|
||||
Require BuiltIn.
|
||||
@@ -6,7 +6,7 @@ Require int.Int.
|
||||
Require map.Map.
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition unit := unit.
|
||||
Definition unit := unit.
|
||||
|
||||
(* Why3 assumption *)
|
||||
Inductive ref (a:Type) {a_WT:WhyType a} :=
|
||||
@@ -16,52 +16,54 @@ Existing Instance ref_WhyType.
|
||||
Implicit Arguments mk_ref [[a] [a_WT]].
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition contents {a:Type} {a_WT:WhyType a}(v:(ref a)): a :=
|
||||
Definition contents {a:Type} {a_WT:WhyType a} (v:(@ref a a_WT)): a :=
|
||||
match v with
|
||||
| (mk_ref x) => x
|
||||
end.
|
||||
|
||||
(* Why3 assumption *)
|
||||
Inductive array (a:Type) {a_WT:WhyType a} :=
|
||||
| mk_array : Z -> (map.Map.map Z a) -> array a.
|
||||
Inductive array
|
||||
(a:Type) {a_WT:WhyType a} :=
|
||||
| mk_array : Z -> (@map.Map.map Z _ a a_WT) -> array a.
|
||||
Axiom array_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
|
||||
Existing Instance array_WhyType.
|
||||
Implicit Arguments mk_array [[a] [a_WT]].
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition elts {a:Type} {a_WT:WhyType a}(v:(array a)): (map.Map.map Z a) :=
|
||||
match v with
|
||||
Definition elts {a:Type} {a_WT:WhyType a} (v:(@array a a_WT)): (@map.Map.map
|
||||
Z _ a a_WT) := match v with
|
||||
| (mk_array x x1) => x1
|
||||
end.
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition length {a:Type} {a_WT:WhyType a}(v:(array a)): Z :=
|
||||
Definition length {a:Type} {a_WT:WhyType a} (v:(@array a a_WT)): Z :=
|
||||
match v with
|
||||
| (mk_array x x1) => x
|
||||
end.
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition get {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z): a :=
|
||||
Definition get {a:Type} {a_WT:WhyType a} (a1:(@array a a_WT)) (i:Z): a :=
|
||||
(map.Map.get (elts a1) i).
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition set {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z) (v:a): (array
|
||||
a) := (mk_array (length a1) (map.Map.set (elts a1) i v)).
|
||||
Definition set {a:Type} {a_WT:WhyType a} (a1:(@array a a_WT)) (i:Z)
|
||||
(v:a): (@array a a_WT) := (mk_array (length a1) (map.Map.set (elts a1) i
|
||||
v)).
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition make {a:Type} {a_WT:WhyType a}(n:Z) (v:a): (array a) :=
|
||||
(mk_array n (map.Map.const v:(map.Map.map Z a))).
|
||||
Definition make {a:Type} {a_WT:WhyType a} (n:Z) (v:a): (@array a a_WT) :=
|
||||
(mk_array n (map.Map.const v:(@map.Map.map Z _ a a_WT))).
|
||||
|
||||
(* Why3 assumption *)
|
||||
Definition decrease1(a:(array Z)): Prop := forall (i:Z), ((0%Z <= i)%Z /\
|
||||
Definition decrease1 (a:(@array Z _)): Prop := forall (i:Z), ((0%Z <= i)%Z /\
|
||||
(i < ((length a) - 1%Z)%Z)%Z) -> (((get a i) - 1%Z)%Z <= (get a
|
||||
(i + 1%Z)%Z))%Z.
|
||||
|
||||
|
||||
(* Why3 goal *)
|
||||
Theorem decrease1_induction : forall (a:(array Z)), (decrease1 a) ->
|
||||
forall (i:Z) (j:Z), (((0%Z <= i)%Z /\ (i <= j)%Z) /\ (j < (length a))%Z) ->
|
||||
Theorem decrease1_induction : forall (a:(@array Z _)), (decrease1 a) ->
|
||||
forall (i:Z) (j:Z), ((0%Z <= i)%Z /\ ((i <= j)%Z /\ (j < (length a))%Z)) ->
|
||||
((((get a i) + i)%Z - j)%Z <= (get a j))%Z.
|
||||
(* Why3 intros a h1 i j (h2,(h3,h4)). *)
|
||||
(* YOU MAY EDIT THE PROOF BELOW *)
|
||||
unfold decrease1.
|
||||
intros a Ha i j Hij.
|
||||
@@ -70,18 +72,17 @@ apply (Zlt_lower_bound_ind _ i).
|
||||
2: omega.
|
||||
intuition.
|
||||
assert (x = i \/ i < x)%Z by omega.
|
||||
destruct H4.
|
||||
destruct H5.
|
||||
subst x.
|
||||
ring_simplify.
|
||||
omega.
|
||||
apply Zle_trans with (get a (x-1) - 1)%Z.
|
||||
assert (i <= x-1 < x)%Z by omega.
|
||||
assert (0 <= i <= x-1 /\ x-1 < length a)%Z by omega.
|
||||
generalize (H (x-1)%Z H8 H9); clear H; intuition.
|
||||
assert (0 <= i /\ i <= x-1 < length a)%Z by omega.
|
||||
generalize (H0 (x-1)%Z H8 H9); clear H0; intuition.
|
||||
apply Zle_trans with (get a (x-1+1))%Z.
|
||||
apply (Ha (x-1)%Z); omega.
|
||||
ring_simplify (x-1+1)%Z.
|
||||
omega.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user