Files
why3/examples/maximum_subarray.mlw

375 lines
12 KiB
Plaintext
Raw Permalink Normal View History

2013-09-25 10:51:00 +02:00
(** Maximum subarray problem
2013-09-25 10:51:00 +02:00
Given an array of integers, find the contiguous subarray with the
2013-09-25 17:27:41 +02:00
largest sum. Subarrays of length 0 are allowed (which means that an
array with negative values only has a maximal sum of 0).
Authors: Jean-Christophe Filliâtre (CNRS)
Guillaume Melquiond (Inria)
Andrei Paskevich (U-PSUD)
*)
2013-09-25 10:51:00 +02:00
module Spec
use int.Int
2013-09-25 10:51:00 +02:00
use export array.Array
2013-09-25 17:27:41 +02:00
use export array.ArraySum
(* provides [sum a l h] = the sum of a[l..h[ and suitable lemmas *)
(* s is no smaller than sums of subarrays a[l..h[ with 0 <= l < maxlo *)
2013-09-25 11:08:34 +02:00
predicate maxsublo (a: array int) (maxlo: int) (s: int) =
forall l h. 0 <= l < maxlo -> l <= h <= length a -> sum a l h <= s
2013-09-25 11:08:34 +02:00
2013-09-25 17:27:41 +02:00
(* s is no smaller than sums of subarrays of a *)
2013-09-25 11:08:34 +02:00
predicate maxsub (a: array int) (s: int) =
forall l h. 0 <= l <= h <= length a -> sum a l h <= s
2013-09-25 10:51:00 +02:00
end
(** In all codes below, reference ms stands for the maximal sum found so far
2013-09-25 17:27:41 +02:00
and ghost references lo and hi hold the bounds for this sum *)
(** Naive solution, in O(N^3) *)
2013-09-25 10:51:00 +02:00
module Algo1
use int.Int
use ref.Refint
use Spec
2013-09-25 10:51:00 +02:00
let maximum_subarray (a: array int) (ghost ref lo hi: int): int
ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
2013-09-25 11:08:34 +02:00
ensures { maxsub a result }
= lo <- 0;
hi <- 0;
2013-09-25 10:51:00 +02:00
let n = length a in
let ref ms = 0 in
2013-09-25 10:51:00 +02:00
for l = 0 to n-1 do
invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
invariant { maxsublo a l ms }
2013-09-25 11:08:34 +02:00
for h = l to n do
invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
invariant { maxsublo a l ms }
invariant { forall h'. l <= h' < h -> sum a l h' <= ms }
2013-09-25 17:27:41 +02:00
(* compute the sum of a[l..h[ *)
let ref s = 0 in
2013-09-25 11:08:34 +02:00
for i = l to h-1 do
invariant { s = sum a l i }
invariant { 0 <= lo <= l && lo <= hi <= n && ms = sum a lo hi }
2013-09-25 10:51:00 +02:00
s += a[i]
done;
assert { s = sum a l h };
if s > ms then begin ms <- s; lo <- l; hi <- h end
2013-09-25 10:51:00 +02:00
done
done;
ms
2013-09-25 10:51:00 +02:00
2013-09-25 11:08:34 +02:00
end
(** Slightly less naive solution, in O(N^2)
2013-09-25 17:27:41 +02:00
Do not recompute the sum, simply update it *)
2013-09-25 11:16:57 +02:00
module Algo2
use int.Int
use ref.Refint
use Spec
2013-09-25 11:16:57 +02:00
let maximum_subarray (a: array int) (ghost ref lo hi: int): int
ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
2013-09-25 11:16:57 +02:00
ensures { maxsub a result }
= lo <- 0;
hi <- 0;
2013-09-25 11:16:57 +02:00
let n = length a in
let ref ms = 0 in
2013-09-25 11:16:57 +02:00
for l = 0 to n-1 do
invariant { 0 <= lo <= l && lo <= hi <= n && 0 <= ms = sum a lo hi }
invariant { maxsublo a l ms }
let ref s = 0 in
2013-09-25 11:16:57 +02:00
for h = l+1 to n do
invariant
{ 0 <= lo <= l && lo <= hi <= n && 0 <= ms = sum a lo hi }
invariant { maxsublo a l ms }
invariant { forall h'. l <= h' < h -> sum a l h' <= ms }
invariant { s = sum a l (h-1) }
2013-09-25 17:27:41 +02:00
s += a[h-1]; (* update the sum *)
assert { s = sum a l h };
if s > ms then begin ms <- s; lo <- l; hi <- h end
2013-09-25 11:16:57 +02:00
done
done;
ms
2013-09-25 11:16:57 +02:00
end
(** Divide-and-conqueer solution, in O(N log N) *)
2013-09-25 11:16:57 +02:00
2013-09-25 14:41:23 +02:00
module Algo3
use int.Int
use ref.Refint
use int.ComputerDivision
use Spec
2013-09-25 14:41:23 +02:00
let rec maximum_subarray_rec (a: array int) (l h: int) (ghost ref lo hi: int)
2013-09-25 14:41:23 +02:00
: int
requires { 0 <= l <= h <= length a }
ensures { l <= lo <= hi <= h && result = sum a lo hi }
ensures { forall l' h'. l <= l' <= h' <= h -> sum a l' h' <= result }
2013-09-25 14:41:23 +02:00
variant { h - l }
= if h = l then begin
(* base case: no element at all *)
lo <- l; hi <- h; 0
2013-09-25 14:41:23 +02:00
end else begin
(* at least one element *)
let mid = l + div (h - l) 2 in
(* first consider all sums that include a[mid] *)
lo <- mid; hi <- mid;
let ref ms = 0 in
let ref s = ms in
2013-09-25 14:41:23 +02:00
for i = mid-1 downto l do
invariant { l <= lo <= mid = hi && ms = sum a lo hi }
invariant { forall l'. i < l' <= mid -> sum a l' mid <= ms }
invariant { s = sum a (i+1) mid }
2013-09-25 14:41:23 +02:00
s += a[i];
assert { s = sum a i mid };
if s > ms then begin ms <- s; lo <- i end
2013-09-25 14:41:23 +02:00
done;
assert { forall l'. l <= l' <= mid ->
sum a l' mid <= sum a lo mid };
s <- ms;
for i = mid to h-1 do
invariant { l <= lo <= mid <= hi <= h && ms = sum a lo hi }
invariant { forall l' h'. l <= l' <= mid <= h' <= i ->
sum a l' h' <= ms }
invariant { s = sum a lo i }
2013-09-25 14:41:23 +02:00
s += a[i];
assert { s = sum a lo (i+1) };
assert { s = sum a lo mid + sum a mid (i+1) };
if s > ms then begin ms <- s; hi <- (i+1) end
2013-09-25 14:41:23 +02:00
done;
(* then consider sums in a[l..mid[ and a[mid+1..h[, recursively *)
begin
let ghost ref lo' = 0 in
let ghost ref hi' = 0 in
2013-09-25 14:41:23 +02:00
let left = maximum_subarray_rec a l mid lo' hi' in
if left > ms then begin ms <- left; lo <- lo'; hi <- hi' end
2013-09-25 14:41:23 +02:00
end;
begin
let ghost ref lo' = 0 in
let ghost ref hi' = 0 in
2013-09-25 14:41:23 +02:00
let right = maximum_subarray_rec a (mid+1) h lo' hi' in
if right > ms then begin ms <- right; lo <- lo'; hi <- hi' end
2013-09-25 14:41:23 +02:00
end;
ms
2013-09-25 14:41:23 +02:00
end
let maximum_subarray (a: array int) (ghost ref lo hi: int): int
ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
2013-09-25 14:41:23 +02:00
ensures { maxsub a result }
= maximum_subarray_rec a 0 (length a) lo hi
end
(** Optimal solution, in O(N)
Known as Kadane's algorithm
The key idea is to maintain, in addition to the best sum found so far,
the best sum that ends at the current point.
i
[ 1 | 7 | -3 | 4 | -7 | 1 | 2 | ...
<--------------> |
max sum so far is 9 <----->
max sum ending at i is 3
Then, for each new value a[i], we
1. update the sum ending at i (in particular, setting it to 0 if a[i]<0);
2. update the maximal sum.
*)
2013-09-25 14:41:23 +02:00
module Algo4
use int.Int
use ref.Refint
use Spec
2013-09-25 14:41:23 +02:00
let maximum_subarray (a: array int) (ghost ref lo hi: int): int
ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
2013-09-25 14:41:23 +02:00
ensures { maxsub a result }
= lo <- 0;
hi <- 0;
2013-09-25 14:41:23 +02:00
let n = length a in
let ref ms = 0 in
let ghost ref l = 0 in
let ref s = 0 in
2013-09-25 14:41:23 +02:00
for i = 0 to n-1 do
invariant { 0 <= lo <= hi <= i && 0 <= ms = sum a lo hi }
invariant { forall l' h'. 0 <= l' <= h' <= i -> sum a l' h' <= ms }
invariant { 0 <= l <= i && s = sum a l i }
invariant { forall l'. 0 <= l' < i -> sum a l' i <= s }
if s < 0 then begin s <- a[i]; l <- i end else s += a[i];
if s > ms then begin ms <- s; lo <- l; hi <- (i+1) end
2013-09-25 14:41:23 +02:00
done;
ms
2013-09-25 14:41:23 +02:00
end
(** A slightly different implementation of Kadane's algorithm *)
module Algo5
use int.Int
use ref.Refint
use export array.Array
use export array.ArraySum
(*
[| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |]
......|###### maxsum #######|..............
............................. |## curmax ##
*)
let maximum_subarray (a: array int): int
ensures { forall l h. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h. 0 <= l <= h <= length a /\ sum a l h = result }
=
let ref maxsum = 0 in
let ref curmax = 0 in
let ghost ref lo = 0 in
let ghost ref hi = 0 in
let ghost ref cl = 0 in
for i = 0 to a.length - 1 do
invariant { forall l. 0 <= l <= i -> sum a l i <= curmax }
invariant { 0 <= cl <= i /\ sum a cl i = curmax }
invariant { forall l h. 0 <= l <= h <= i -> sum a l h <= maxsum }
invariant { 0 <= lo <= hi <= i /\ sum a lo hi = maxsum }
curmax += a[i];
if curmax < 0 then begin curmax <- 0; cl <- i+1 end;
if curmax > maxsum then begin maxsum <- curmax; lo <- cl; hi <- i+1 end
done;
maxsum
end
(** Kadane's algorithm with 63-bit integers
Interestingly, we only have to require all sums to be no greater
than max_int. There is no need to require the sums to be no
smaller than min_int, since whenever the sum becomes negative it is
replaced by the next element. *)
module BoundedIntegers
use int.Int
use mach.int.Int63
use mach.int.Refint63
use seq.Seq
use mach.array.Array63
use int.Sum
function sum (a: array int63) (lo hi: int) : int =
Sum.sum (fun i -> (a[i] : int)) lo hi
let maximum_subarray (a: array int63) (ghost ref lo hi: int): int63
requires { [@no overflow] forall l h. 0 <= l <= h <= length a ->
sum a l h <= max_int }
ensures { 0 <= lo <= hi <= length a && result = sum a lo hi }
ensures { forall l h. 0 <= l <= h <= length a -> result >= sum a lo hi }
= lo <- 0;
hi <- 0;
let n = length a in
let ref ms = zero in
let ghost ref l = 0 in
let ref s = zero in
let ref i = zero in
while i < n do
invariant { 0 <= lo <= hi <= i <= n && 0 <= ms = sum a lo hi }
invariant { forall l' h'. 0 <= l' <= h' <= i -> sum a l' h' <= ms }
invariant { 0 <= l <= i && s = sum a l i }
invariant { forall l'. 0 <= l' < i -> sum a l' i <= s }
variant { n - i }
if s < zero then begin s <- a[i]; l <- to_int i end
else begin assert { sum a l (i + 1) <= max_int }; s += a[i] end;
if s > ms then begin
ms <- s; lo <- l; hi <- to_int i + 1 end;
incr i
done;
ms
end
(** Variant where we seek for the maximal product instead of the
maximal sum.
This is an exercise in Jeff Erickson's book "Algorithms", and the
author reports that most solutions he could find online were
incorrect. Indeed, this happens to be subtle to get right.
The idea is to maintain *two* maximal products ending at position i,
one positive and one negative.
maximum so far is 10
<----> i
3 0 5 2 -1 2 4 1 | ...
<---------->
maximum positive product so far is 6
<-------------------------->
maximum negative product so far is -60
*)
module MaxProd
use int.Int
use ref.Refint
use export array.Array
(** the product of a[lo..hi[ *)
let rec function prod (a: array int) (lo hi: int) : int
requires { 0 <= lo <= hi <= length a }
variant { hi-lo }
= if lo = hi then 1 else prod a lo (hi-1) * a[hi-1]
let maximum_subarray (a: array int): int
ensures { forall l h. 0 <= l <= h <= length a -> prod a l h <= result }
ensures { exists l h. 0 <= l <= h <= length a /\ prod a l h = result }
=
let ref maxprd = 1 in
let ref curmaxp = 1 in
let ref curmaxn = 0 in
let ghost ref lo = 0 in
let ghost ref hi = 0 in
let ghost ref clp = 0 in
let ghost ref cln = 0 in
for i = 0 to a.length - 1 do
invariant { 0 <= clp <= i /\ prod a clp i = curmaxp >= 1 }
invariant { forall l. 0 <= l <= i -> 0 <= prod a l i ->
prod a l i <= curmaxp }
invariant { curmaxn <= 0 }
invariant { curmaxn < 0 -> 0 <= cln <= i /\ prod a cln i = curmaxn < 0 }
invariant { curmaxn < 0 -> forall l. 0 <= l <= i -> prod a l i < 0 ->
curmaxn <= prod a l i }
invariant { curmaxn = 0 -> forall l. 0 <= l <= i -> prod a l i >= 0 }
invariant { forall l h. 0 <= l <= h <= i -> prod a l h <= maxprd }
invariant { 0 <= lo <= hi <= i /\ prod a lo hi = maxprd >= 1 }
if a[i] = 0 then (
curmaxp <- 1; clp <- i+1; curmaxn <- 0; cln <- i+1 )
else if a[i] > 0 then (
curmaxp <- curmaxp * a[i];
curmaxn <- curmaxn * a[i]; )
else (* a[i] < 0 *)
if curmaxn < 0 then (
curmaxp, curmaxn <- curmaxn * a[i], curmaxp * a[i];
clp, cln <- cln, clp )
else ( (* curmaxn = 0 i.e. no negative product *)
curmaxp, curmaxn <- 1, curmaxp * a[i];
clp, cln <- i+1, clp; )
;
if curmaxp > maxprd then (
maxprd <- curmaxp; lo <- clp; hi <- i+1
)
done;
maxprd
end