Files
why3/examples/binary_multiplication.mlw

70 lines
1.7 KiB
Plaintext
Raw Permalink Normal View History

2015-09-04 09:41:42 +02:00
(** {1 Russian peasant multiplication}
Multiply two integers a and b using only addition, multiplication by 2,
and division by 2.
Note: this is exactly the same algorithm as exponentiation by squaring
with power/*/1 being replaced by */+/0.
*)
2015-09-04 09:41:42 +02:00
module BinaryMultiplication
use mach.int.Int
use ref.Ref
2015-09-04 09:41:42 +02:00
let binary_mult (a b: int) : int
2015-09-04 09:41:42 +02:00
requires { b >= 0 }
ensures { result = a * b }
= let x = ref a in
let y = ref b in
let z = ref 0 in
while !y <> 0 do
invariant { 0 <= !y }
invariant { !z + !x * !y = a * b }
variant { !y }
if !y % 2 = 1 then z := !z + !x;
2015-09-04 09:41:42 +02:00
x := 2 * !x;
2017-02-03 08:44:38 +01:00
y := !y / 2
2015-09-04 09:41:42 +02:00
done;
!z
end
(** Now using machine integers.
Assuming that the product fits in machine integers, we can still
verify the code. The only exception is when `a*b = min_int`.
The code below makes no assumption on the sign of `b`.
Instead, it uses the fact that `!y % 2` has the sign of `!y`
so that `!x` is either added to or subtracted from the result.
*)
module BinaryMultiplication63
use int.Int
use int.Abs
use mach.int.Int63
use ref.Ref
let binary_mult (a b: int63) : int63
requires { min_int < a * b <= max_int }
ensures { result = a * b }
= let x = ref a in
let y = ref b in
let z = ref 0 in
while !y <> 0 do
invariant { if a*b >= 0 then !x * !y >= 0 && !z >= 0
else !x * !y <= 0 && !z <= 0 }
invariant { !z + !x * !y = a * b }
variant { abs !y }
z := !z + !x * (!y % 2);
y := !y / 2;
(* be careful not to make the very last multiplication *)
if !y <> 0 then x := 2 * !x
done;
!z
end