Files
cvc5/examples/api/java/FloatingPointArith.java
2024-03-12 09:35:09 -07:00

105 lines
4.4 KiB
Java

/******************************************************************************
* Top contributors (to current version):
* Mudathir Mohamed, Andres Noetzli, Aina Niemetz
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2024 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* An example of solving floating-point problems with cvc5's Java API
*
* This example shows to create floating-point types, variables and expressions,
* and how to create rounding mode constants by solving toy problems. The
* example also shows making special values (such as NaN and +oo) and converting
* an IEEE 754-2008 bit-vector to a floating-point number.
*/
import static io.github.cvc5.Kind.*;
import io.github.cvc5.*;
public class FloatingPointArith
{
public static void main(String[] args) throws CVC5ApiException
{
Solver solver = new Solver();
{
solver.setOption("produce-models", "true");
// Make single precision floating-point variables
Sort fpt32 = solver.mkFloatingPointSort(8, 24);
Term a = solver.mkConst(fpt32, "a");
Term b = solver.mkConst(fpt32, "b");
Term c = solver.mkConst(fpt32, "c");
Term d = solver.mkConst(fpt32, "d");
Term e = solver.mkConst(fpt32, "e");
// Assert that floating-point addition is not associative:
// (a + (b + c)) != ((a + b) + c)
Term rm = solver.mkRoundingMode(RoundingMode.ROUND_NEAREST_TIES_TO_EVEN);
Term lhs = solver.mkTerm(
Kind.FLOATINGPOINT_ADD, rm, a, solver.mkTerm(Kind.FLOATINGPOINT_ADD, rm, b, c));
Term rhs = solver.mkTerm(
Kind.FLOATINGPOINT_ADD, rm, solver.mkTerm(Kind.FLOATINGPOINT_ADD, rm, a, b), c);
solver.assertFormula(solver.mkTerm(Kind.NOT, solver.mkTerm(Kind.EQUAL, a, b)));
Result r = solver.checkSat(); // result is sat
assert r.isSat();
System.out.println("a = " + solver.getValue(a));
System.out.println("b = " + solver.getValue(b));
System.out.println("c = " + solver.getValue(c));
// Now, let's restrict `a` to be either NaN or positive infinity
Term nan = solver.mkFloatingPointNaN(8, 24);
Term inf = solver.mkFloatingPointPosInf(8, 24);
solver.assertFormula(solver.mkTerm(
Kind.OR, solver.mkTerm(Kind.EQUAL, a, inf), solver.mkTerm(Kind.EQUAL, a, nan)));
r = solver.checkSat(); // result is sat
assert r.isSat();
System.out.println("a = " + solver.getValue(a));
System.out.println("b = " + solver.getValue(b));
System.out.println("c = " + solver.getValue(c));
// And now for something completely different. Let's try to find a (normal)
// floating-point number that rounds to different integer values for
// different rounding modes.
Term rtp = solver.mkRoundingMode(RoundingMode.ROUND_TOWARD_POSITIVE);
Term rtn = solver.mkRoundingMode(RoundingMode.ROUND_TOWARD_NEGATIVE);
Op op = solver.mkOp(Kind.FLOATINGPOINT_TO_SBV, 16); // (_ fp.to_sbv 16)
lhs = solver.mkTerm(op, rtp, d);
rhs = solver.mkTerm(op, rtn, d);
solver.assertFormula(solver.mkTerm(Kind.FLOATINGPOINT_IS_NORMAL, d));
solver.assertFormula(solver.mkTerm(Kind.NOT, solver.mkTerm(Kind.EQUAL, lhs, rhs)));
r = solver.checkSat(); // result is sat
assert r.isSat();
// Convert the result to a rational and print it
Term val = solver.getValue(d);
Term realVal = solver.getValue(solver.mkTerm(FLOATINGPOINT_TO_REAL, val));
System.out.println("d = " + val + " = " + realVal);
System.out.println("((_ fp.to_sbv 16) RTP d) = " + solver.getValue(lhs));
System.out.println("((_ fp.to_sbv 16) RTN d) = " + solver.getValue(rhs));
// For our final trick, let's try to find a floating-point number between
// positive zero and the smallest positive floating-point number
Term zero = solver.mkFloatingPointPosZero(8, 24);
Term smallest = solver.mkFloatingPoint(8, 24, solver.mkBitVector(32, 0b001));
solver.assertFormula(solver.mkTerm(Kind.AND,
solver.mkTerm(Kind.FLOATINGPOINT_LT, zero, e),
solver.mkTerm(Kind.FLOATINGPOINT_LT, e, smallest)));
r = solver.checkSat(); // result is unsat
assert !r.isSat();
}
Context.deletePointers();
}
}