mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
#!/usr/bin/env python
|
|
###############################################################################
|
|
# Top contributors (to current version):
|
|
# Aina Niemetz, Makai Mann, Alex Ozdemir
|
|
#
|
|
# This file is part of the cvc5 project.
|
|
#
|
|
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
|
|
# in the top-level source directory and their institutional affiliations.
|
|
# All rights reserved. See the file COPYING in the top-level source
|
|
# directory for licensing information.
|
|
# #############################################################################
|
|
#
|
|
# A simple demonstration of the solving capabilities of the cvc5 sets solver
|
|
# through the Python API. This is a direct translation of sets.cpp.
|
|
##
|
|
|
|
import cvc5
|
|
from cvc5 import Kind
|
|
|
|
if __name__ == "__main__":
|
|
tm = cvc5.TermManager()
|
|
slv = cvc5.Solver(tm)
|
|
|
|
# Optionally, set the logic. We need at least UF for equality predicate,
|
|
# integers (LIA) and sets (FS).
|
|
slv.setLogic("QF_UFLIAFS")
|
|
|
|
# Produce models
|
|
slv.setOption("produce-models", "true")
|
|
slv.setOption("output-language", "smt2")
|
|
|
|
integer = tm.getIntegerSort()
|
|
set_ = tm.mkSetSort(integer)
|
|
|
|
# Verify union distributions over intersection
|
|
# (A union B) intersection C = (A intersection C) union (B intersection C)
|
|
|
|
A = tm.mkConst(set_, "A")
|
|
B = tm.mkConst(set_, "B")
|
|
C = tm.mkConst(set_, "C")
|
|
|
|
unionAB = tm.mkTerm(Kind.SET_UNION, A, B)
|
|
lhs = tm.mkTerm(Kind.SET_INTER, unionAB, C)
|
|
|
|
intersectionAC = tm.mkTerm(Kind.SET_INTER, A, C)
|
|
intersectionBC = tm.mkTerm(Kind.SET_INTER, B, C)
|
|
rhs = tm.mkTerm(Kind.SET_UNION, intersectionAC, intersectionBC)
|
|
|
|
theorem = tm.mkTerm(Kind.EQUAL, lhs, rhs)
|
|
|
|
print("cvc5 reports: {} is {}".format(
|
|
theorem.notTerm(), slv.checkSatAssuming(theorem.notTerm())))
|
|
|
|
# Verify emptset is a subset of any set
|
|
|
|
A = tm.mkConst(set_, "A")
|
|
emptyset = tm.mkEmptySet(set_)
|
|
|
|
theorem = tm.mkTerm(Kind.SET_SUBSET, emptyset, A)
|
|
|
|
print("cvc5 reports: {} is {}".format(
|
|
theorem.notTerm(), slv.checkSatAssuming(theorem.notTerm())))
|
|
|
|
# Find me an element in 1, 2 intersection 2, 3, if there is one.
|
|
|
|
one = tm.mkInteger(1)
|
|
two = tm.mkInteger(2)
|
|
three = tm.mkInteger(3)
|
|
|
|
singleton_one = tm.mkTerm(Kind.SET_SINGLETON, one)
|
|
singleton_two = tm.mkTerm(Kind.SET_SINGLETON, two)
|
|
singleton_three = tm.mkTerm(Kind.SET_SINGLETON, three)
|
|
one_two = tm.mkTerm(Kind.SET_UNION, singleton_one, singleton_two)
|
|
two_three = tm.mkTerm(Kind.SET_UNION, singleton_two, singleton_three)
|
|
intersection = tm.mkTerm(Kind.SET_INTER, one_two, two_three)
|
|
|
|
x = tm.mkConst(integer, "x")
|
|
|
|
e = tm.mkTerm(Kind.SET_MEMBER, x, intersection)
|
|
|
|
result = slv.checkSatAssuming(e)
|
|
|
|
print("cvc5 reports: {} is {}".format(e, result))
|
|
|
|
if result:
|
|
print("For instance, {} is a member".format(slv.getValue(x)))
|