Files
cvc5/examples/api/cpp/floating_point_arith.cpp
2025-01-23 17:54:20 +00:00

151 lines
5.9 KiB
C++

/******************************************************************************
* Top contributors (to current version):
* Aina Niemetz, Mudathir Mohamed, Mathias Preiner
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* An example of solving floating-point problems with cvc5's cpp API.
*
* This example shows to create floating-point types, variables and expressions,
* and how to create rounding mode constants by solving toy problems. The
* example also shows making special values (such as NaN and +oo) and converting
* an IEEE 754-2008 bit-vector to a floating-point number.
*/
#include <cvc5/cvc5.h>
#include <iostream>
#include <cassert>
using namespace cvc5;
int main()
{
TermManager tm;
Solver solver(tm);
solver.setOption("incremental", "true");
solver.setOption("produce-models", "true");
// Make single precision floating-point variables
Sort fpt32 = tm.mkFloatingPointSort(8, 24);
Term a = tm.mkConst(fpt32, "a");
Term b = tm.mkConst(fpt32, "b");
Term c = tm.mkConst(fpt32, "c");
Term d = tm.mkConst(fpt32, "d");
Term e = tm.mkConst(fpt32, "e");
// Rounding mode
Term rm = tm.mkRoundingMode(RoundingMode::ROUND_NEAREST_TIES_TO_EVEN);
std::cout << "Show that fused multiplication and addition `(fp.fma RM a b c)`"
<< std::endl
<< "is different from `(fp.add RM (fp.mul a b) c)`:" << std::endl;
solver.push(1);
Term fma = tm.mkTerm(Kind::FLOATINGPOINT_FMA, {rm, a, b, c});
Term mul = tm.mkTerm(Kind::FLOATINGPOINT_MULT, {rm, a, b});
Term add = tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, mul, c});
solver.assertFormula(tm.mkTerm(Kind::DISTINCT, {fma, add}));
Result r = solver.checkSat(); // result is sat
std::cout << "Expect sat: " << r << std::endl;
std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
std::cout << "Value of `(fp.fma RNE a b c)`: " << solver.getValue(fma)
<< std::endl;
std::cout << "Value of `(fp.add RNE (fp.mul a b) c)`: "
<< solver.getValue(add) << std::endl;
std::cout << std::endl;
solver.pop(1);
std::cout << "Show that floating-point addition is not associative:"
<< std::endl;
std::cout << "(a + (b + c)) != ((a + b) + c)" << std::endl;
solver.push(1);
solver.assertFormula(tm.mkTerm(
Kind::DISTINCT,
{tm.mkTerm(Kind::FLOATINGPOINT_ADD,
{rm, a, tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, b, c})}),
tm.mkTerm(Kind::FLOATINGPOINT_ADD,
{rm, tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, a, b}), c})}));
r = solver.checkSat(); // result is sat
std::cout << "Expect sat: " << r << std::endl;
assert (r.isSat());
std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
std::cout << std::endl;
std::cout << "Now, restrict `a` to be either NaN or positive infinity:"
<< std::endl;
Term nan = tm.mkFloatingPointNaN(8, 24);
Term inf = tm.mkFloatingPointPosInf(8, 24);
solver.assertFormula(tm.mkTerm(
Kind::OR,
{tm.mkTerm(Kind::EQUAL, {a, inf}), tm.mkTerm(Kind::EQUAL, {a, nan})}));
r = solver.checkSat(); // result is sat
std::cout << "Expect sat: " << r << std::endl;
assert (r.isSat());
std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
std::cout << std::endl;
solver.pop(1);
std::cout << "Now, try to find a (normal) floating-point number that rounds"
<< std::endl
<< "to different integer values for different rounding modes:"
<< std::endl;
solver.push(1);
Term rtp = tm.mkRoundingMode(RoundingMode::ROUND_TOWARD_POSITIVE);
Term rtn = tm.mkRoundingMode(RoundingMode::ROUND_TOWARD_NEGATIVE);
Op op = tm.mkOp(Kind::FLOATINGPOINT_TO_UBV, {16}); // (_ fp.to_ubv 16)
Term lhs = tm.mkTerm(op, {rtp, d});
Term rhs = tm.mkTerm(op, {rtn, d});
solver.assertFormula(tm.mkTerm(Kind::FLOATINGPOINT_IS_NORMAL, {d}));
solver.assertFormula(
tm.mkTerm(Kind::NOT, {tm.mkTerm(Kind::EQUAL, {lhs, rhs})}));
r = solver.checkSat(); // result is sat
std::cout << "Expect sat: " << r << std::endl;
assert (r.isSat());
std::cout << std::endl;
std::cout << "Get value of `d` as floating-point, bit-vector and real:"
<< std::endl;
Term val = solver.getValue(d);
std::cout << "Value of `d`: " << val << std::endl;
std::cout << "Value of `((_ fp.to_ubv 16) RTP d)`: " << solver.getValue(lhs)
<< std::endl;
std::cout << "Value of `((_ fp.to_ubv 16) RTN d)`: " << solver.getValue(rhs)
<< std::endl;
std::cout << "Value of `(fp.to_real d)` "
<< solver.getValue(tm.mkTerm(Kind::FLOATINGPOINT_TO_REAL, {val}))
<< std::endl;
std::cout << std::endl;
solver.pop(1);
std::cout << "Finally, try to find a floating-point number between positive"
<< std::endl
<< "zero and the smallest positive floating-point number:"
<< std::endl;
Term zero = tm.mkFloatingPointPosZero(8, 24);
Term smallest = tm.mkFloatingPoint(8, 24, tm.mkBitVector(32, 1));
solver.assertFormula(
tm.mkTerm(Kind::AND,
{tm.mkTerm(Kind::FLOATINGPOINT_LT, {zero, e}),
tm.mkTerm(Kind::FLOATINGPOINT_LT, {e, smallest})}));
r = solver.checkSat(); // result is unsat
std::cout << "Expect unsat: " << r << std::endl;
assert(r.isUnsat());
}