Files
cvc5/examples/api/cpp/quickstart.cpp
Mathias Preiner bbcd471ed4 Introduce internal namespace and remove api namespace. (#8443)
The public cvc5 API now lives in the cvc5 namespace. All internal parts were moved into the (new) internal namespace.
The final hierarchy will be as follows:

cvc5
  ~~ public API
  ::context
  ::internal
  ::parser
  ::main

After this PR it will be:

cvc5
  ~~ public API
  ::internal
      ::context
      ::main
  ::parser
2022-03-29 23:23:01 +00:00

179 lines
6.3 KiB
C++

/******************************************************************************
* Top contributors (to current version):
* Yoni Zohar
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the api capabilities of cvc5.
*
*/
#include <cvc5/cvc5.h>
#include <iostream>
#include <numeric>
using namespace cvc5;
int main()
{
// Create a solver
Solver solver;
// We will ask the solver to produce models and unsat cores,
// hence these options should be turned on.
solver.setOption("produce-models", "true");
solver.setOption("produce-unsat-cores", "true");
// The simplest way to set a logic for the solver is to choose "ALL".
// This enables all logics in the solver.
// Alternatively, "QF_ALL" enables all logics without quantifiers.
// To optimize the solver's behavior for a more specific logic,
// use the logic name, e.g. "QF_BV" or "QF_AUFBV".
// Set the logic
solver.setLogic("ALL");
// In this example, we will define constraints over reals and integers.
// Hence, we first obtain the corresponding sorts.
Sort realSort = solver.getRealSort();
Sort intSort = solver.getIntegerSort();
// x and y will be real variables, while a and b will be integer variables.
// Formally, their cpp type is Term,
// and they are called "constants" in SMT jargon:
Term x = solver.mkConst(realSort, "x");
Term y = solver.mkConst(realSort, "y");
Term a = solver.mkConst(intSort, "a");
Term b = solver.mkConst(intSort, "b");
// Our constraints regarding x and y will be:
//
// (1) 0 < x
// (2) 0 < y
// (3) x + y < 1
// (4) x <= y
//
// Formally, constraints are also terms. Their sort is Boolean.
// We will construct these constraints gradually,
// by defining each of their components.
// We start with the constant numerals 0 and 1:
Term zero = solver.mkReal(0);
Term one = solver.mkReal(1);
// Next, we construct the term x + y
Term xPlusY = solver.mkTerm(ADD, {x, y});
// Now we can define the constraints.
// They use the operators +, <=, and <.
// In the API, these are denoted by ADD, LEQ, and LT.
// A list of available operators is available in:
// src/api/cpp/cvc5_kind.h
Term constraint1 = solver.mkTerm(LT, {zero, x});
Term constraint2 = solver.mkTerm(LT, {zero, y});
Term constraint3 = solver.mkTerm(LT, {xPlusY, one});
Term constraint4 = solver.mkTerm(LEQ, {x, y});
// Now we assert the constraints to the solver.
solver.assertFormula(constraint1);
solver.assertFormula(constraint2);
solver.assertFormula(constraint3);
solver.assertFormula(constraint4);
// Check if the formula is satisfiable, that is,
// are there real values for x and y that satisfy all the constraints?
Result r1 = solver.checkSat();
// The result is either SAT, UNSAT, or UNKNOWN.
// In this case, it is SAT.
std::cout << "expected: sat" << std::endl;
std::cout << "result: " << r1 << std::endl;
// We can get the values for x and y that satisfy the constraints.
Term xVal = solver.getValue(x);
Term yVal = solver.getValue(y);
// It is also possible to get values for compound terms,
// even if those did not appear in the original formula.
Term xMinusY = solver.mkTerm(SUB, {x, y});
Term xMinusYVal = solver.getValue(xMinusY);
// We can now obtain the string representations of the values.
std::string xStr = xVal.getRealValue();
std::string yStr = yVal.getRealValue();
std::string xMinusYStr = xMinusYVal.getRealValue();
std::cout << "value for x: " << xStr << std::endl;
std::cout << "value for y: " << yStr << std::endl;
std::cout << "value for x - y: " << xMinusYStr << std::endl;
// Further, we can convert the values to cpp types
std::pair<int64_t, uint64_t> xPair = xVal.getReal64Value();
std::pair<int64_t, uint64_t> yPair = yVal.getReal64Value();
std::pair<int64_t, uint64_t> xMinusYPair = xMinusYVal.getReal64Value();
std::cout << "value for x: " << xPair.first << "/" << xPair.second << std::endl;
std::cout << "value for y: " << yPair.first << "/" << yPair.second << std::endl;
std::cout << "value for x - y: " << xMinusYPair.first << "/" << xMinusYPair.second << std::endl;
// Another way to independently compute the value of x - y would be
// to perform the (rational) arithmetic manually.
// However, for more complex terms,
// it is easier to let the solver do the evaluation.
std::pair<int64_t, uint64_t> xMinusYComputed = {
xPair.first * yPair.second - xPair.second * yPair.first,
xPair.second * yPair.second
};
uint64_t g = std::gcd(xMinusYComputed.first, xMinusYComputed.second);
xMinusYComputed = { xMinusYComputed.first / g, xMinusYComputed.second / g };
if (xMinusYComputed == xMinusYPair)
{
std::cout << "computed correctly" << std::endl;
}
else
{
std::cout << "computed incorrectly" << std::endl;
}
// Next, we will check satisfiability of the same formula,
// only this time over integer variables a and b.
// We start by resetting assertions added to the solver.
solver.resetAssertions();
// Next, we assert the same assertions above with integers.
// This time, we inline the construction of terms
// to the assertion command.
solver.assertFormula(solver.mkTerm(LT, {solver.mkInteger(0), a}));
solver.assertFormula(solver.mkTerm(LT, {solver.mkInteger(0), b}));
solver.assertFormula(
solver.mkTerm(LT, {solver.mkTerm(ADD, {a, b}), solver.mkInteger(1)}));
solver.assertFormula(solver.mkTerm(LEQ, {a, b}));
// We check whether the revised assertion is satisfiable.
Result r2 = solver.checkSat();
// This time the formula is unsatisfiable
std::cout << "expected: unsat" << std::endl;
std::cout << "result: " << r2 << std::endl;
// We can query the solver for an unsatisfiable core, i.e., a subset
// of the assertions that is already unsatisfiable.
std::vector<Term> unsatCore = solver.getUnsatCore();
std::cout << "unsat core size: " << unsatCore.size() << std::endl;
std::cout << "unsat core: " << std::endl;
for (const Term& t : unsatCore)
{
std::cout << t << std::endl;
}
return 0;
}