mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
129 lines
4.9 KiB
Java
129 lines
4.9 KiB
Java
/******************************************************************************
|
|
* Top contributors (to current version):
|
|
* Aina Niemetz, Liana Hadarean, Makai Mann
|
|
*
|
|
* This file is part of the cvc5 project.
|
|
*
|
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
|
|
* in the top-level source directory and their institutional affiliations.
|
|
* All rights reserved. See the file COPYING in the top-level source
|
|
* directory for licensing information.
|
|
* ****************************************************************************
|
|
*
|
|
* A simple demonstration of the solving capabilities of the cvc5
|
|
* bit-vector solver.
|
|
*
|
|
*/
|
|
|
|
import io.github.cvc5.*;
|
|
import java.util.*;
|
|
|
|
public class BitVectors
|
|
{
|
|
public static void main(String args[]) throws CVC5ApiException
|
|
{
|
|
try (Solver slv = new Solver())
|
|
{
|
|
slv.setLogic("QF_BV"); // Set the logic
|
|
|
|
// The following example has been adapted from the book A Hacker's Delight by
|
|
// Henry S. Warren.
|
|
//
|
|
// Given a variable x that can only have two values, a or b. We want to
|
|
// assign to x a value other than the current one. The straightforward code
|
|
// to do that is:
|
|
//
|
|
//(0) if (x == a ) x = b;
|
|
// else x = a;
|
|
//
|
|
// Two more efficient yet equivalent methods are:
|
|
//
|
|
//(1) x = a ⊕ b ⊕ x;
|
|
//
|
|
//(2) x = a + b - x;
|
|
//
|
|
// We will use cvc5 to prove that the three pieces of code above are all
|
|
// equivalent by encoding the problem in the bit-vector theory.
|
|
|
|
// Creating a bit-vector type of width 32
|
|
Sort bitvector32 = slv.mkBitVectorSort(32);
|
|
|
|
// Variables
|
|
Term x = slv.mkConst(bitvector32, "x");
|
|
Term a = slv.mkConst(bitvector32, "a");
|
|
Term b = slv.mkConst(bitvector32, "b");
|
|
|
|
// First encode the assumption that x must be Kind.EQUAL to a or b
|
|
Term x_eq_a = slv.mkTerm(Kind.EQUAL, x, a);
|
|
Term x_eq_b = slv.mkTerm(Kind.EQUAL, x, b);
|
|
Term assumption = slv.mkTerm(Kind.OR, x_eq_a, x_eq_b);
|
|
|
|
// Assert the assumption
|
|
slv.assertFormula(assumption);
|
|
|
|
// Introduce a new variable for the new value of x after assignment.
|
|
Term new_x = slv.mkConst(bitvector32, "new_x"); // x after executing code (0)
|
|
Term new_x_ = slv.mkConst(bitvector32, "new_x_"); // x after executing code (1) or (2)
|
|
|
|
// Encoding code (0)
|
|
// new_x = x == a ? b : a;
|
|
Term ite = slv.mkTerm(Kind.ITE, x_eq_a, b, a);
|
|
Term assignment0 = slv.mkTerm(Kind.EQUAL, new_x, ite);
|
|
|
|
// Assert the encoding of code (0)
|
|
System.out.println("Asserting " + assignment0 + " to cvc5 ");
|
|
slv.assertFormula(assignment0);
|
|
System.out.println("Pushing a new context.");
|
|
slv.push();
|
|
|
|
// Encoding code (1)
|
|
// new_x_ = a xor b xor x
|
|
Term a_xor_b_xor_x = slv.mkTerm(Kind.BITVECTOR_XOR, a, b, x);
|
|
Term assignment1 = slv.mkTerm(Kind.EQUAL, new_x_, a_xor_b_xor_x);
|
|
|
|
// Assert encoding to cvc5 in current context;
|
|
System.out.println("Asserting " + assignment1 + " to cvc5 ");
|
|
slv.assertFormula(assignment1);
|
|
Term new_x_eq_new_x_ = slv.mkTerm(Kind.EQUAL, new_x, new_x_);
|
|
|
|
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
|
|
System.out.println(" Expect UNSAT. ");
|
|
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
|
|
System.out.println(" Popping context. ");
|
|
slv.pop();
|
|
|
|
// Encoding code (2)
|
|
// new_x_ = a + b - x
|
|
Term a_plus_b = slv.mkTerm(Kind.BITVECTOR_ADD, a, b);
|
|
Term a_plus_b_minus_x = slv.mkTerm(Kind.BITVECTOR_SUB, a_plus_b, x);
|
|
Term assignment2 = slv.mkTerm(Kind.EQUAL, new_x_, a_plus_b_minus_x);
|
|
|
|
// Assert encoding to cvc5 in current context;
|
|
System.out.println("Asserting " + assignment2 + " to cvc5 ");
|
|
slv.assertFormula(assignment2);
|
|
|
|
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
|
|
System.out.println(" Expect UNSAT. ");
|
|
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
|
|
|
|
Term x_neq_x = slv.mkTerm(Kind.EQUAL, x, x).notTerm();
|
|
Term[] v = new Term[] {new_x_eq_new_x_, x_neq_x};
|
|
Term query = slv.mkTerm(Kind.AND, v);
|
|
System.out.println(" Check sat assuming: " + query.notTerm());
|
|
System.out.println(" Expect SAT. ");
|
|
System.out.println(" cvc5: " + slv.checkSatAssuming(query.notTerm()));
|
|
|
|
// Assert that a is odd
|
|
Op extract_op = slv.mkOp(Kind.BITVECTOR_EXTRACT, 0, 0);
|
|
Term lsb_of_a = slv.mkTerm(extract_op, a);
|
|
System.out.println("Sort of " + lsb_of_a + " is " + lsb_of_a.getSort());
|
|
Term a_odd = slv.mkTerm(Kind.EQUAL, lsb_of_a, slv.mkBitVector(1, 1));
|
|
System.out.println("Assert " + a_odd);
|
|
System.out.println("Check satisfiability.");
|
|
slv.assertFormula(a_odd);
|
|
System.out.println(" Expect sat. ");
|
|
System.out.println(" cvc5: " + slv.checkSat());
|
|
}
|
|
}
|
|
}
|