mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
This commits changes the build system to cvc5 and removes the remaining occurrences of CVC4. It further cleans up outdated/unused scripts in contrib/.
91 lines
3.6 KiB
Python
91 lines
3.6 KiB
Python
#!/usr/bin/env python
|
|
###############################################################################
|
|
# Top contributors (to current version):
|
|
# Makai Mann, Andres Noetzli
|
|
#
|
|
# This file is part of the cvc5 project.
|
|
#
|
|
# Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
|
|
# in the top-level source directory and their institutional affiliations.
|
|
# All rights reserved. See the file COPYING in the top-level source
|
|
# directory for licensing information.
|
|
# #############################################################################
|
|
#
|
|
# A simple demonstration of the solving capabilities of the cvc5
|
|
# floating point solver through the Python API contributed by Eva
|
|
# Darulova. This requires building cvc5 with symfpu.
|
|
##
|
|
|
|
import pycvc5
|
|
from pycvc5 import kinds
|
|
|
|
if __name__ == "__main__":
|
|
slv = pycvc5.Solver()
|
|
|
|
if not slv.supportsFloatingPoint():
|
|
# cvc5 must be built with SymFPU to support the theory of
|
|
# floating-point numbers
|
|
print("cvc5 was not built with floating-point support.")
|
|
exit()
|
|
|
|
slv.setOption("produce-models", "true")
|
|
slv.setLogic("QF_FP")
|
|
|
|
# single 32-bit precision
|
|
fp32 = slv.mkFloatingPointSort(8, 24)
|
|
|
|
# the standard rounding mode
|
|
rm = slv.mkRoundingMode(pycvc5.RoundNearestTiesToEven)
|
|
|
|
# create a few single-precision variables
|
|
x = slv.mkConst(fp32, 'x')
|
|
y = slv.mkConst(fp32, 'y')
|
|
z = slv.mkConst(fp32, 'z')
|
|
|
|
# check floating-point arithmetic is commutative, i.e. x + y == y + x
|
|
commutative = slv.mkTerm(kinds.FPEq, slv.mkTerm(kinds.FPPlus, rm, x, y), slv.mkTerm(kinds.FPPlus, rm, y, x))
|
|
|
|
slv.push()
|
|
slv.assertFormula(slv.mkTerm(kinds.Not, commutative))
|
|
print("Checking floating-point commutativity")
|
|
print("Expect SAT (property does not hold for NaN and Infinities).")
|
|
print("cvc5:", slv.checkSat())
|
|
print("Model for x:", slv.getValue(x))
|
|
print("Model for y:", slv.getValue(y))
|
|
|
|
# disallow NaNs and Infinities
|
|
slv.assertFormula(slv.mkTerm(kinds.Not, slv.mkTerm(kinds.FPIsNan, x)))
|
|
slv.assertFormula(slv.mkTerm(kinds.Not, slv.mkTerm(kinds.FPIsInf, x)))
|
|
slv.assertFormula(slv.mkTerm(kinds.Not, slv.mkTerm(kinds.FPIsNan, y)))
|
|
slv.assertFormula(slv.mkTerm(kinds.Not, slv.mkTerm(kinds.FPIsInf, y)))
|
|
|
|
print("Checking floating-point commutativity assuming x and y are not NaN or Infinity")
|
|
print("Expect UNSAT.")
|
|
print("cvc5:", slv.checkSat())
|
|
|
|
# check floating-point arithmetic is not associative
|
|
slv.pop()
|
|
|
|
# constrain x, y, z between -3.14 and 3.14 (also disallows NaN and infinity)
|
|
a = slv.mkFloatingPoint(8, 24, slv.mkBitVector("11000000010010001111010111000011", 2)) # -3.14
|
|
b = slv.mkFloatingPoint(8, 24, slv.mkBitVector("01000000010010001111010111000011", 2)) # 3.14
|
|
|
|
bounds_x = slv.mkTerm(kinds.And, slv.mkTerm(kinds.FPLeq, a, x), slv.mkTerm(kinds.FPLeq, x, b))
|
|
bounds_y = slv.mkTerm(kinds.And, slv.mkTerm(kinds.FPLeq, a, y), slv.mkTerm(kinds.FPLeq, y, b))
|
|
bounds_z = slv.mkTerm(kinds.And, slv.mkTerm(kinds.FPLeq, a, z), slv.mkTerm(kinds.FPLeq, z, b))
|
|
slv.assertFormula(slv.mkTerm(kinds.And, slv.mkTerm(kinds.And, bounds_x, bounds_y), bounds_z))
|
|
|
|
# (x + y) + z == x + (y + z)
|
|
lhs = slv.mkTerm(kinds.FPPlus, rm, slv.mkTerm(kinds.FPPlus, rm, x, y), z)
|
|
rhs = slv.mkTerm(kinds.FPPlus, rm, x, slv.mkTerm(kinds.FPPlus, rm, y, z))
|
|
associative = slv.mkTerm(kinds.Not, slv.mkTerm(kinds.FPEq, lhs, rhs))
|
|
|
|
slv.assertFormula(associative)
|
|
|
|
print("Checking floating-point associativity")
|
|
print("Expect SAT.")
|
|
print("cvc5:", slv.checkSat())
|
|
print("Model for x:", slv.getValue(x))
|
|
print("Model for y:", slv.getValue(y))
|
|
print("Model for z:", slv.getValue(z))
|