mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
120 lines
4.8 KiB
Java
120 lines
4.8 KiB
Java
/******************************************************************************
|
|
* Top contributors (to current version):
|
|
* Andres Noetzli
|
|
*
|
|
* This file is part of the cvc5 project.
|
|
*
|
|
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
|
|
* in the top-level source directory and their institutional affiliations.
|
|
* All rights reserved. See the file COPYING in the top-level source
|
|
* directory for licensing information.
|
|
* ****************************************************************************
|
|
*
|
|
* An example of solving floating-point problems with CVC4's Java API
|
|
*
|
|
* This example shows how to check whether CVC4 was built with floating-point
|
|
* support, how to create floating-point types, variables and expressions, and
|
|
* how to create rounding mode constants by solving toy problems. The example
|
|
* also shows making special values (such as NaN and +oo) and converting an
|
|
* IEEE 754-2008 bit-vector to a floating-point number.
|
|
*/
|
|
|
|
import edu.stanford.CVC4.*;
|
|
import java.util.Iterator;
|
|
|
|
public class FloatingPointArith {
|
|
public static void main(String[] args) {
|
|
System.loadLibrary("cvc4jni");
|
|
|
|
// Test whether CVC4 was built with floating-point support
|
|
if (!Configuration.isBuiltWithSymFPU()) {
|
|
System.out.println("CVC4 was built without floating-point support.");
|
|
System.out.println("Configure with --symfpu and rebuild CVC4 to run");
|
|
System.out.println("this example.");
|
|
System.exit(77);
|
|
}
|
|
|
|
ExprManager em = new ExprManager();
|
|
SmtEngine smt = new SmtEngine(em);
|
|
|
|
// Enable the model production
|
|
smt.setOption("produce-models", new SExpr(true));
|
|
|
|
// Make single precision floating-point variables
|
|
FloatingPointType fpt32 = em.mkFloatingPointType(8, 24);
|
|
Expr a = em.mkVar("a", fpt32);
|
|
Expr b = em.mkVar("b", fpt32);
|
|
Expr c = em.mkVar("c", fpt32);
|
|
Expr d = em.mkVar("d", fpt32);
|
|
Expr e = em.mkVar("e", fpt32);
|
|
|
|
// Assert that floating-point addition is not associative:
|
|
// (a + (b + c)) != ((a + b) + c)
|
|
Expr rm = em.mkConst(RoundingMode.roundNearestTiesToEven);
|
|
Expr lhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
|
|
rm,
|
|
a,
|
|
em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, b, c));
|
|
Expr rhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
|
|
rm,
|
|
em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, a, b),
|
|
c);
|
|
smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, a, b)));
|
|
|
|
Result r = smt.checkSat(); // result is sat
|
|
assert r.isSat() == Result.Sat.SAT;
|
|
|
|
System.out.println("a = " + smt.getValue(a));
|
|
System.out.println("b = " + smt.getValue(b));
|
|
System.out.println("c = " + smt.getValue(c));
|
|
|
|
// Now, let's restrict `a` to be either NaN or positive infinity
|
|
FloatingPointSize fps32 = new FloatingPointSize(8, 24);
|
|
Expr nan = em.mkConst(FloatingPoint.makeNaN(fps32));
|
|
Expr inf = em.mkConst(FloatingPoint.makeInf(fps32, /* sign */ true));
|
|
smt.assertFormula(em.mkExpr(
|
|
Kind.OR, em.mkExpr(Kind.EQUAL, a, inf), em.mkExpr(Kind.EQUAL, a, nan)));
|
|
|
|
r = smt.checkSat(); // result is sat
|
|
assert r.isSat() == Result.Sat.SAT;
|
|
|
|
System.out.println("a = " + smt.getValue(a));
|
|
System.out.println("b = " + smt.getValue(b));
|
|
System.out.println("c = " + smt.getValue(c));
|
|
|
|
// And now for something completely different. Let's try to find a (normal)
|
|
// floating-point number that rounds to different integer values for
|
|
// different rounding modes.
|
|
Expr rtp = em.mkConst(RoundingMode.roundTowardPositive);
|
|
Expr rtn = em.mkConst(RoundingMode.roundTowardNegative);
|
|
Expr op = em.mkConst(new FloatingPointToSBV(16)); // (_ fp.to_sbv 16)
|
|
lhs = em.mkExpr(op, rtp, d);
|
|
rhs = em.mkExpr(op, rtn, d);
|
|
smt.assertFormula(em.mkExpr(Kind.FLOATINGPOINT_ISN, d));
|
|
smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, lhs, rhs)));
|
|
|
|
r = smt.checkSat(); // result is sat
|
|
assert r.isSat() == Result.Sat.SAT;
|
|
|
|
// Convert the result to a rational and print it
|
|
Expr val = smt.getValue(d);
|
|
Rational realVal =
|
|
val.getConstFloatingPoint().convertToRationalTotal(new Rational(0));
|
|
System.out.println("d = " + val + " = " + realVal);
|
|
System.out.println("((_ fp.to_sbv 16) RTP d) = " + smt.getValue(lhs));
|
|
System.out.println("((_ fp.to_sbv 16) RTN d) = " + smt.getValue(rhs));
|
|
|
|
// For our final trick, let's try to find a floating-point number between
|
|
// positive zero and the smallest positive floating-point number
|
|
Expr zero = em.mkConst(FloatingPoint.makeZero(fps32, /* sign */ true));
|
|
Expr smallest =
|
|
em.mkConst(new FloatingPoint(8, 24, new BitVector(32, 0b001)));
|
|
smt.assertFormula(em.mkExpr(Kind.AND,
|
|
em.mkExpr(Kind.FLOATINGPOINT_LT, zero, e),
|
|
em.mkExpr(Kind.FLOATINGPOINT_LT, e, smallest)));
|
|
|
|
r = smt.checkSat(); // result is unsat
|
|
assert r.isSat() == Result.Sat.UNSAT;
|
|
}
|
|
}
|