Files
cvc5/examples/api/java/BitVectors.java
mudathirmahgoub 690a392656 Enable CI for Junit tests (#7436)
This PR enables CI for java tests by adding --java-bindings to ci.yml.
It also replaces the unreliable finalize method and instead uses AutoCloseable and explicit close method to clean up dynamic memory allocated by java native interface.
The PR fixes compile errors for SolverTest.java and runtime errors for Solver.defineFun.
2021-11-03 21:32:10 +00:00

128 lines
4.8 KiB
Java

/******************************************************************************
* Top contributors (to current version):
* Aina Niemetz, Liana Hadarean, Makai Mann
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the solving capabilities of the cvc5
* bit-vector solver.
*
*/
import io.github.cvc5.api.*;
import java.util.*;
public class BitVectors
{
public static void main(String args[]) throws CVC5ApiException
{
try (Solver slv = new Solver())
{
slv.setLogic("QF_BV"); // Set the logic
// The following example has been adapted from the book A Hacker's Delight by
// Henry S. Warren.
//
// Given a variable x that can only have two values, a or b. We want to
// assign to x a value other than the current one. The straightforward code
// to do that is:
//
//(0) if (x == a ) x = b;
// else x = a;
//
// Two more efficient yet equivalent methods are:
//
//(1) x = a ⊕ b ⊕ x;
//
//(2) x = a + b - x;
//
// We will use cvc5 to prove that the three pieces of code above are all
// equivalent by encoding the problem in the bit-vector theory.
// Creating a bit-vector type of width 32
Sort bitvector32 = slv.mkBitVectorSort(32);
// Variables
Term x = slv.mkConst(bitvector32, "x");
Term a = slv.mkConst(bitvector32, "a");
Term b = slv.mkConst(bitvector32, "b");
// First encode the assumption that x must be Kind.EQUAL to a or b
Term x_eq_a = slv.mkTerm(Kind.EQUAL, x, a);
Term x_eq_b = slv.mkTerm(Kind.EQUAL, x, b);
Term assumption = slv.mkTerm(Kind.OR, x_eq_a, x_eq_b);
// Assert the assumption
slv.assertFormula(assumption);
// Introduce a new variable for the new value of x after assignment.
Term new_x = slv.mkConst(bitvector32, "new_x"); // x after executing code (0)
Term new_x_ = slv.mkConst(bitvector32, "new_x_"); // x after executing code (1) or (2)
// Encoding code (0)
// new_x = x == a ? b : a;
Term ite = slv.mkTerm(Kind.ITE, x_eq_a, b, a);
Term assignment0 = slv.mkTerm(Kind.EQUAL, new_x, ite);
// Assert the encoding of code (0)
System.out.println("Asserting " + assignment0 + " to cvc5 ");
slv.assertFormula(assignment0);
System.out.println("Pushing a new context.");
slv.push();
// Encoding code (1)
// new_x_ = a xor b xor x
Term a_xor_b_xor_x = slv.mkTerm(Kind.BITVECTOR_XOR, a, b, x);
Term assignment1 = slv.mkTerm(Kind.EQUAL, new_x_, a_xor_b_xor_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment1 + " to cvc5 ");
slv.assertFormula(assignment1);
Term new_x_eq_new_x_ = slv.mkTerm(Kind.EQUAL, new_x, new_x_);
System.out.println(" Check entailment assuming: " + new_x_eq_new_x_);
System.out.println(" Expect ENTAILED. ");
System.out.println(" cvc5: " + slv.checkEntailed(new_x_eq_new_x_));
System.out.println(" Popping context. ");
slv.pop();
// Encoding code (2)
// new_x_ = a + b - x
Term a_plus_b = slv.mkTerm(Kind.BITVECTOR_ADD, a, b);
Term a_plus_b_minus_x = slv.mkTerm(Kind.BITVECTOR_SUB, a_plus_b, x);
Term assignment2 = slv.mkTerm(Kind.EQUAL, new_x_, a_plus_b_minus_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment2 + " to cvc5 ");
slv.assertFormula(assignment2);
System.out.println(" Check entailment assuming: " + new_x_eq_new_x_);
System.out.println(" Expect ENTAILED. ");
System.out.println(" cvc5: " + slv.checkEntailed(new_x_eq_new_x_));
Term x_neq_x = slv.mkTerm(Kind.EQUAL, x, x).notTerm();
Term[] v = new Term[] {new_x_eq_new_x_, x_neq_x};
System.out.println(" Check entailment assuming: " + v);
System.out.println(" Expect NOT_ENTAILED. ");
System.out.println(" cvc5: " + slv.checkEntailed(v));
// Assert that a is odd
Op extract_op = slv.mkOp(Kind.BITVECTOR_EXTRACT, 0, 0);
Term lsb_of_a = slv.mkTerm(extract_op, a);
System.out.println("Sort of " + lsb_of_a + " is " + lsb_of_a.getSort());
Term a_odd = slv.mkTerm(Kind.EQUAL, lsb_of_a, slv.mkBitVector(1, 1));
System.out.println("Assert " + a_odd);
System.out.println("Check satisfiability.");
slv.assertFormula(a_odd);
System.out.println(" Expect sat. ");
System.out.println(" cvc5: " + slv.checkSat());
}
}
}