mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
154 lines
6.0 KiB
C++
154 lines
6.0 KiB
C++
/******************************************************************************
|
|
* Top contributors (to current version):
|
|
* Mudathir Mohamed, Aina Niemetz, Mathias Preiner
|
|
*
|
|
* This file is part of the cvc5 project.
|
|
*
|
|
* Copyright (c) 2009-2024 by the authors listed in the file AUTHORS
|
|
* in the top-level source directory and their institutional affiliations.
|
|
* All rights reserved. See the file COPYING in the top-level source
|
|
* directory for licensing information.
|
|
* ****************************************************************************
|
|
*
|
|
* A simple demonstration of reasoning about relations via the C++ API.
|
|
*/
|
|
|
|
#include <cvc5/cvc5.h>
|
|
|
|
#include <iostream>
|
|
|
|
using namespace cvc5;
|
|
|
|
int main()
|
|
{
|
|
TermManager tm;
|
|
Solver solver(tm);
|
|
|
|
// Set the logic
|
|
solver.setLogic("ALL");
|
|
|
|
// options
|
|
solver.setOption("produce-models", "true");
|
|
// we need finite model finding to answer sat problems with universal
|
|
// quantified formulas
|
|
solver.setOption("finite-model-find", "true");
|
|
// we need sets extension to support set.universe operator
|
|
solver.setOption("sets-ext", "true");
|
|
|
|
// (declare-sort Person 0)
|
|
Sort personSort = tm.mkUninterpretedSort("Person");
|
|
|
|
// (Tuple Person)
|
|
Sort tupleArity1 = tm.mkTupleSort({personSort});
|
|
// (Relation Person)
|
|
Sort relationArity1 = tm.mkSetSort(tupleArity1);
|
|
|
|
// (Tuple Person Person)
|
|
Sort tupleArity2 = tm.mkTupleSort({personSort, personSort});
|
|
// (Relation Person Person)
|
|
Sort relationArity2 = tm.mkSetSort(tupleArity2);
|
|
|
|
// empty set
|
|
Term emptySetTerm = tm.mkEmptySet(relationArity1);
|
|
|
|
// empty relation
|
|
Term emptyRelationTerm = tm.mkEmptySet(relationArity2);
|
|
|
|
// universe set
|
|
Term universeSet = tm.mkUniverseSet(relationArity1);
|
|
|
|
// variables
|
|
Term people = tm.mkConst(relationArity1, "people");
|
|
Term males = tm.mkConst(relationArity1, "males");
|
|
Term females = tm.mkConst(relationArity1, "females");
|
|
Term father = tm.mkConst(relationArity2, "father");
|
|
Term mother = tm.mkConst(relationArity2, "mother");
|
|
Term parent = tm.mkConst(relationArity2, "parent");
|
|
Term ancestor = tm.mkConst(relationArity2, "ancestor");
|
|
Term descendant = tm.mkConst(relationArity2, "descendant");
|
|
|
|
Term isEmpty1 = tm.mkTerm(Kind::EQUAL, {males, emptySetTerm});
|
|
Term isEmpty2 = tm.mkTerm(Kind::EQUAL, {females, emptySetTerm});
|
|
|
|
// (assert (= people (as set.universe (Relation Person))))
|
|
Term peopleAreTheUniverse = tm.mkTerm(Kind::EQUAL, {people, universeSet});
|
|
// (assert (not (= males (as set.empty (Relation Person)))))
|
|
Term maleSetIsNotEmpty = tm.mkTerm(Kind::NOT, {isEmpty1});
|
|
// (assert (not (= females (as set.empty (Relation Person)))))
|
|
Term femaleSetIsNotEmpty = tm.mkTerm(Kind::NOT, {isEmpty2});
|
|
|
|
// (assert (= (set.inter males females)
|
|
// (as set.empty (Relation Person))))
|
|
Term malesFemalesIntersection = tm.mkTerm(Kind::SET_INTER, {males, females});
|
|
Term malesAndFemalesAreDisjoint =
|
|
tm.mkTerm(Kind::EQUAL, {malesFemalesIntersection, emptySetTerm});
|
|
|
|
// (assert (not (= father (as set.empty (Relation Person Person)))))
|
|
// (assert (not (= mother (as set.empty (Relation Person Person)))))
|
|
Term isEmpty3 = tm.mkTerm(Kind::EQUAL, {father, emptyRelationTerm});
|
|
Term isEmpty4 = tm.mkTerm(Kind::EQUAL, {mother, emptyRelationTerm});
|
|
Term fatherIsNotEmpty = tm.mkTerm(Kind::NOT, {isEmpty3});
|
|
Term motherIsNotEmpty = tm.mkTerm(Kind::NOT, {isEmpty4});
|
|
|
|
// fathers are males
|
|
// (assert (set.subset (rel.join father people) males))
|
|
Term fathers = tm.mkTerm(Kind::RELATION_JOIN, {father, people});
|
|
Term fathersAreMales = tm.mkTerm(Kind::SET_SUBSET, {fathers, males});
|
|
|
|
// mothers are females
|
|
// (assert (set.subset (rel.join mother people) females))
|
|
Term mothers = tm.mkTerm(Kind::RELATION_JOIN, {mother, people});
|
|
Term mothersAreFemales = tm.mkTerm(Kind::SET_SUBSET, {mothers, females});
|
|
|
|
// (assert (= parent (set.union father mother)))
|
|
Term unionFatherMother = tm.mkTerm(Kind::SET_UNION, {father, mother});
|
|
Term parentIsFatherOrMother =
|
|
tm.mkTerm(Kind::EQUAL, {parent, unionFatherMother});
|
|
|
|
// (assert (= ancestor (rel.tclosure parent)))
|
|
Term transitiveClosure = tm.mkTerm(Kind::RELATION_TCLOSURE, {parent});
|
|
Term ancestorFormula = tm.mkTerm(Kind::EQUAL, {ancestor, transitiveClosure});
|
|
|
|
// (assert (= descendant (rel.transpose descendant)))
|
|
Term transpose = tm.mkTerm(Kind::RELATION_TRANSPOSE, {ancestor});
|
|
Term descendantFormula = tm.mkTerm(Kind::EQUAL, {descendant, transpose});
|
|
|
|
// (assert (forall ((x Person)) (not (set.member (tuple x x) ancestor))))
|
|
Term x = tm.mkVar(personSort, "x");
|
|
Term xxTuple = tm.mkTuple({x, x});
|
|
Term member = tm.mkTerm(Kind::SET_MEMBER, {xxTuple, ancestor});
|
|
Term notMember = tm.mkTerm(Kind::NOT, {member});
|
|
|
|
Term quantifiedVariables = tm.mkTerm(Kind::VARIABLE_LIST, {x});
|
|
Term noSelfAncestor =
|
|
tm.mkTerm(Kind::FORALL, {quantifiedVariables, notMember});
|
|
|
|
// formulas
|
|
solver.assertFormula(peopleAreTheUniverse);
|
|
solver.assertFormula(maleSetIsNotEmpty);
|
|
solver.assertFormula(femaleSetIsNotEmpty);
|
|
solver.assertFormula(malesAndFemalesAreDisjoint);
|
|
solver.assertFormula(fatherIsNotEmpty);
|
|
solver.assertFormula(motherIsNotEmpty);
|
|
solver.assertFormula(fathersAreMales);
|
|
solver.assertFormula(mothersAreFemales);
|
|
solver.assertFormula(parentIsFatherOrMother);
|
|
solver.assertFormula(descendantFormula);
|
|
solver.assertFormula(ancestorFormula);
|
|
solver.assertFormula(noSelfAncestor);
|
|
|
|
// check sat
|
|
Result result = solver.checkSat();
|
|
|
|
// output
|
|
std::cout << "Result = " << result << std::endl;
|
|
std::cout << "people = " << solver.getValue(people) << std::endl;
|
|
std::cout << "males = " << solver.getValue(males) << std::endl;
|
|
std::cout << "females = " << solver.getValue(females) << std::endl;
|
|
std::cout << "father = " << solver.getValue(father) << std::endl;
|
|
std::cout << "mother = " << solver.getValue(mother) << std::endl;
|
|
std::cout << "parent = " << solver.getValue(parent) << std::endl;
|
|
std::cout << "descendant = " << solver.getValue(descendant) << std::endl;
|
|
std::cout << "ancestor = " << solver.getValue(ancestor) << std::endl;
|
|
}
|