mirror of
https://github.com/AdaCore/cvc5.git
synced 2026-02-12 12:32:16 -08:00
131 lines
4.4 KiB
C++
131 lines
4.4 KiB
C++
/******************************************************************************
|
|
* Top contributors (to current version):
|
|
* Aina Niemetz, Liana Hadarean, Andrew Reynolds
|
|
*
|
|
* This file is part of the cvc5 project.
|
|
*
|
|
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
|
|
* in the top-level source directory and their institutional affiliations.
|
|
* All rights reserved. See the file COPYING in the top-level source
|
|
* directory for licensing information.
|
|
* ****************************************************************************
|
|
*
|
|
* A simple demonstration of the solving capabilities of the cvc5
|
|
* bit-vector solver.
|
|
*
|
|
*/
|
|
|
|
#include <cvc5/cvc5.h>
|
|
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace cvc5;
|
|
|
|
int main()
|
|
{
|
|
TermManager tm;
|
|
Solver slv(tm);
|
|
slv.setLogic("QF_BV"); // Set the logic
|
|
|
|
// The following example has been adapted from the book A Hacker's Delight by
|
|
// Henry S. Warren.
|
|
//
|
|
// Given a variable x that can only have two values, a or b. We want to
|
|
// assign to x a value other than the current one. The straightforward code
|
|
// to do that is:
|
|
//
|
|
//(0) if (x == a ) x = b;
|
|
// else x = a;
|
|
//
|
|
// Two more efficient yet equivalent methods are:
|
|
//
|
|
//(1) x = a ⊕ b ⊕ x;
|
|
//
|
|
//(2) x = a + b - x;
|
|
//
|
|
// We will use cvc5 to prove that the three pieces of code above are all
|
|
// equivalent by encoding the problem in the bit-vector theory.
|
|
|
|
// Creating a bit-vector type of width 32
|
|
Sort bv32 = tm.mkBitVectorSort(32);
|
|
|
|
// Variables
|
|
Term x = tm.mkConst(bv32, "x");
|
|
Term a = tm.mkConst(bv32, "a");
|
|
Term b = tm.mkConst(bv32, "b");
|
|
|
|
// First encode the assumption that x must be equal to a or b
|
|
Term x_eq_a = tm.mkTerm(Kind::EQUAL, {x, a});
|
|
Term x_eq_b = tm.mkTerm(Kind::EQUAL, {x, b});
|
|
Term assumption = tm.mkTerm(Kind::OR, {x_eq_a, x_eq_b});
|
|
|
|
// Assert the assumption
|
|
slv.assertFormula(assumption);
|
|
|
|
// Introduce a new variable for the new value of x after assignment.
|
|
Term new_x = tm.mkConst(bv32, "new_x"); // x after executing code (0)
|
|
Term new_x_ =
|
|
tm.mkConst(bv32, "new_x_"); // x after executing code (1) or (2)
|
|
|
|
// Encoding code (0)
|
|
// new_x = x == a ? b : a;
|
|
Term ite = tm.mkTerm(Kind::ITE, {x_eq_a, b, a});
|
|
Term assignment0 = tm.mkTerm(Kind::EQUAL, {new_x, ite});
|
|
|
|
// Assert the encoding of code (0)
|
|
cout << "Asserting " << assignment0 << " to cvc5" << endl;
|
|
slv.assertFormula(assignment0);
|
|
cout << "Pushing a new context." << endl;
|
|
slv.push();
|
|
|
|
// Encoding code (1)
|
|
// new_x_ = a xor b xor x
|
|
Term a_xor_b_xor_x = tm.mkTerm(Kind::BITVECTOR_XOR, {a, b, x});
|
|
Term assignment1 = tm.mkTerm(Kind::EQUAL, {new_x_, a_xor_b_xor_x});
|
|
|
|
// Assert encoding to cvc5 in current context;
|
|
cout << "Asserting " << assignment1 << " to cvc5" << endl;
|
|
slv.assertFormula(assignment1);
|
|
Term new_x_eq_new_x_ = tm.mkTerm(Kind::EQUAL, {new_x, new_x_});
|
|
|
|
cout << " Check sat assuming: " << new_x_eq_new_x_.notTerm() << endl;
|
|
cout << " Expect UNSAT." << endl;
|
|
cout << " cvc5: " << slv.checkSatAssuming(new_x_eq_new_x_.notTerm()) << endl;
|
|
cout << " Popping context." << endl;
|
|
slv.pop();
|
|
|
|
// Encoding code (2)
|
|
// new_x_ = a + b - x
|
|
Term a_plus_b = tm.mkTerm(Kind::BITVECTOR_ADD, {a, b});
|
|
Term a_plus_b_minus_x = tm.mkTerm(Kind::BITVECTOR_SUB, {a_plus_b, x});
|
|
Term assignment2 = tm.mkTerm(Kind::EQUAL, {new_x_, a_plus_b_minus_x});
|
|
|
|
// Assert encoding to cvc5 in current context;
|
|
cout << "Asserting " << assignment2 << " to cvc5" << endl;
|
|
slv.assertFormula(assignment2);
|
|
|
|
cout << " Check sat assuming: " << new_x_eq_new_x_.notTerm() << endl;
|
|
cout << " Expect UNSAT." << endl;
|
|
cout << " cvc5: " << slv.checkSatAssuming(new_x_eq_new_x_.notTerm()) << endl;
|
|
|
|
Term x_neq_x = tm.mkTerm(Kind::DISTINCT, {x, x});
|
|
std::vector<Term> v{new_x_eq_new_x_, x_neq_x};
|
|
Term query = tm.mkTerm(Kind::AND, {v});
|
|
cout << " Check sat assuming: " << query.notTerm() << endl;
|
|
cout << " Expect SAT." << endl;
|
|
cout << " cvc5: " << slv.checkSatAssuming(query.notTerm()) << endl;
|
|
|
|
// Assert that a is odd
|
|
Op extract_op = tm.mkOp(Kind::BITVECTOR_EXTRACT, {0, 0});
|
|
Term lsb_of_a = tm.mkTerm(extract_op, {a});
|
|
cout << "Sort of " << lsb_of_a << " is " << lsb_of_a.getSort() << endl;
|
|
Term a_odd = tm.mkTerm(Kind::EQUAL, {lsb_of_a, tm.mkBitVector(1u, 1u)});
|
|
cout << "Assert " << a_odd << endl;
|
|
cout << "Check satisfiability." << endl;
|
|
slv.assertFormula(a_odd);
|
|
cout << " Expect sat." << endl;
|
|
cout << " cvc5: " << slv.checkSat() << endl;
|
|
return 0;
|
|
}
|