Files
cvc5/examples/api/java/BitVectors.java
mudathirmahgoub 7ff15aa749 Refctor Solver.java to extend AbstractPointer (#10064)
This refactors the Solver class in the java API to extend AbstractPointer similar to other cvc5 classes.
It also cleans up redundant code for Abstract pointers. and adds Context.deletePointers to java examples as mentioned in issue #10052.
2023-10-02 06:20:26 +00:00

130 lines
4.9 KiB
Java

/******************************************************************************
* Top contributors (to current version):
* Mudathir Mohamed, Liana Hadarean, Morgan Deters
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the solving capabilities of the cvc5
* bit-vector solver.
*
*/
import io.github.cvc5.*;
import java.util.*;
public class BitVectors
{
public static void main(String args[]) throws CVC5ApiException
{
Solver slv = new Solver();
{
slv.setLogic("QF_BV"); // Set the logic
// The following example has been adapted from the book A Hacker's Delight by
// Henry S. Warren.
//
// Given a variable x that can only have two values, a or b. We want to
// assign to x a value other than the current one. The straightforward code
// to do that is:
//
//(0) if (x == a ) x = b;
// else x = a;
//
// Two more efficient yet equivalent methods are:
//
//(1) x = a ⊕ b ⊕ x;
//
//(2) x = a + b - x;
//
// We will use cvc5 to prove that the three pieces of code above are all
// equivalent by encoding the problem in the bit-vector theory.
// Creating a bit-vector type of width 32
Sort bitvector32 = slv.mkBitVectorSort(32);
// Variables
Term x = slv.mkConst(bitvector32, "x");
Term a = slv.mkConst(bitvector32, "a");
Term b = slv.mkConst(bitvector32, "b");
// First encode the assumption that x must be Kind.EQUAL to a or b
Term x_eq_a = slv.mkTerm(Kind.EQUAL, x, a);
Term x_eq_b = slv.mkTerm(Kind.EQUAL, x, b);
Term assumption = slv.mkTerm(Kind.OR, x_eq_a, x_eq_b);
// Assert the assumption
slv.assertFormula(assumption);
// Introduce a new variable for the new value of x after assignment.
Term new_x = slv.mkConst(bitvector32, "new_x"); // x after executing code (0)
Term new_x_ = slv.mkConst(bitvector32, "new_x_"); // x after executing code (1) or (2)
// Encoding code (0)
// new_x = x == a ? b : a;
Term ite = slv.mkTerm(Kind.ITE, x_eq_a, b, a);
Term assignment0 = slv.mkTerm(Kind.EQUAL, new_x, ite);
// Assert the encoding of code (0)
System.out.println("Asserting " + assignment0 + " to cvc5 ");
slv.assertFormula(assignment0);
System.out.println("Pushing a new context.");
slv.push();
// Encoding code (1)
// new_x_ = a xor b xor x
Term a_xor_b_xor_x = slv.mkTerm(Kind.BITVECTOR_XOR, a, b, x);
Term assignment1 = slv.mkTerm(Kind.EQUAL, new_x_, a_xor_b_xor_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment1 + " to cvc5 ");
slv.assertFormula(assignment1);
Term new_x_eq_new_x_ = slv.mkTerm(Kind.EQUAL, new_x, new_x_);
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
System.out.println(" Expect UNSAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
System.out.println(" Popping context. ");
slv.pop();
// Encoding code (2)
// new_x_ = a + b - x
Term a_plus_b = slv.mkTerm(Kind.BITVECTOR_ADD, a, b);
Term a_plus_b_minus_x = slv.mkTerm(Kind.BITVECTOR_SUB, a_plus_b, x);
Term assignment2 = slv.mkTerm(Kind.EQUAL, new_x_, a_plus_b_minus_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment2 + " to cvc5 ");
slv.assertFormula(assignment2);
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
System.out.println(" Expect UNSAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
Term x_neq_x = slv.mkTerm(Kind.EQUAL, x, x).notTerm();
Term[] v = new Term[] {new_x_eq_new_x_, x_neq_x};
Term query = slv.mkTerm(Kind.AND, v);
System.out.println(" Check sat assuming: " + query.notTerm());
System.out.println(" Expect SAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(query.notTerm()));
// Assert that a is odd
Op extract_op = slv.mkOp(Kind.BITVECTOR_EXTRACT, 0, 0);
Term lsb_of_a = slv.mkTerm(extract_op, a);
System.out.println("Sort of " + lsb_of_a + " is " + lsb_of_a.getSort());
Term a_odd = slv.mkTerm(Kind.EQUAL, lsb_of_a, slv.mkBitVector(1, 1));
System.out.println("Assert " + a_odd);
System.out.println("Check satisfiability.");
slv.assertFormula(a_odd);
System.out.println(" Expect sat. ");
System.out.println(" cvc5: " + slv.checkSat());
}
Context.deletePointers();
}
}