Files
cvc5/examples/api/java/SygusGrammar.java
2022-10-04 17:06:02 +00:00

102 lines
3.4 KiB
Java

/******************************************************************************
* Top contributors (to current version):
* Mudathir Mohamed, Andrew Reynolds, Andres Noetzli
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the Sygus API.
*
* A simple demonstration of how to use Grammar to add syntax constraints to
* the Sygus solution for the identity function. This is a direct translation
* of sygus-grammar.cpp.
*/
import static io.github.cvc5.Kind.*;
import io.github.cvc5.*;
public class SygusGrammar
{
public static void main(String args[]) throws CVC5ApiException
{
Solver slv = new Solver();
{
// required options
slv.setOption("sygus", "true");
slv.setOption("incremental", "false");
// set the logic
slv.setLogic("LIA");
Sort integer = slv.getIntegerSort();
// declare input variable for the function-to-synthesize
Term x = slv.mkVar(integer, "x");
// declare the grammar non-terminal
Term start = slv.mkVar(integer, "Start");
// define the rules
Term zero = slv.mkInteger(0);
Term neg_x = slv.mkTerm(NEG, x);
Term plus = slv.mkTerm(ADD, x, start);
// create the grammar object
Grammar g1 = slv.mkGrammar(new Term[] {x}, new Term[] {start});
// bind each non-terminal to its rules
g1.addRules(start, new Term[] {neg_x, plus});
// copy the first grammar with all of its non-terminals and their rules
Grammar g2 = new Grammar(g1);
Grammar g3 = new Grammar(g1);
// add parameters as rules for the start symbol. Similar to "(Variable Int)"
g2.addAnyVariable(start);
// declare the functions-to-synthesize
Term id1 = slv.synthFun("id1", new Term[] {x}, integer, g1);
Term id2 = slv.synthFun("id2", new Term[] {x}, integer, g2);
g3.addRule(start, zero);
Term id3 = slv.synthFun("id3", new Term[] {x}, integer, g3);
// g1 is reusable as long as it remains unmodified after first use
Term id4 = slv.synthFun("id4", new Term[] {x}, integer, g1);
// declare universal variables.
Term varX = slv.declareSygusVar("x", integer);
Term id1_x = slv.mkTerm(APPLY_UF, id1, varX);
Term id2_x = slv.mkTerm(APPLY_UF, id2, varX);
Term id3_x = slv.mkTerm(APPLY_UF, id3, varX);
Term id4_x = slv.mkTerm(APPLY_UF, id4, varX);
// add semantic constraints
// (constraint (= (id1 x) (id2 x) (id3 x) (id4 x) x))
slv.addSygusConstraint(slv.mkTerm(EQUAL, new Term[] {id1_x, id2_x, id3_x, id4_x, varX}));
// print solutions if available
if (slv.checkSynth().hasSolution())
{
// Output should be equivalent to:
// (
// (define-fun id1 ((x Int)) Int (+ x (+ x (- x))))
// (define-fun id2 ((x Int)) Int x)
// (define-fun id3 ((x Int)) Int (+ x 0))
// (define-fun id4 ((x Int)) Int (+ x (+ x (- x))))
// )
Term[] terms = new Term[] {id1, id2, id3, id4};
Utils.printSynthSolutions(terms, slv.getSynthSolutions(terms));
}
}
}
}