/****************************************************************************** * Top contributors (to current version): * Mudathir Mohamed, Morgan Deters, Tim King * * This file is part of the cvc5 project. * * Copyright (c) 2009-2024 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * A simple demonstration of the linear arithmetic solving capabilities and * the push pop of cvc5. This also gives an example option. */ import io.github.cvc5.*; public class LinearArith { public static void main(String args[]) throws CVC5ApiException { Solver slv = new Solver(); { slv.setLogic("QF_LIRA"); // Set the logic // Prove that if given x (Integer) and y (Real) then // the maximum value of y - x is 2/3 // Sorts Sort real = slv.getRealSort(); Sort integer = slv.getIntegerSort(); // Variables Term x = slv.mkConst(integer, "x"); Term y = slv.mkConst(real, "y"); // Constants Term three = slv.mkInteger(3); Term neg2 = slv.mkInteger(-2); Term two_thirds = slv.mkReal(2, 3); // Terms Term three_y = slv.mkTerm(Kind.MULT, three, y); Term diff = slv.mkTerm(Kind.SUB, y, x); // Formulas Term x_geq_3y = slv.mkTerm(Kind.GEQ, x, three_y); Term x_leq_y = slv.mkTerm(Kind.LEQ, x, y); Term neg2_lt_x = slv.mkTerm(Kind.LT, neg2, x); Term assertions = slv.mkTerm(Kind.AND, x_geq_3y, x_leq_y, neg2_lt_x); System.out.println("Given the assertions " + assertions); slv.assertFormula(assertions); slv.push(); Term diff_leq_two_thirds = slv.mkTerm(Kind.LEQ, diff, two_thirds); System.out.println("Prove that " + diff_leq_two_thirds + " with cvc5."); System.out.println("cvc5 should report UNSAT."); System.out.println( "Result from cvc5 is: " + slv.checkSatAssuming(diff_leq_two_thirds.notTerm())); slv.pop(); System.out.println(); slv.push(); Term diff_is_two_thirds = slv.mkTerm(Kind.EQUAL, diff, two_thirds); slv.assertFormula(diff_is_two_thirds); System.out.println("Show that the assertions are consistent with "); System.out.println(diff_is_two_thirds + " with cvc5."); System.out.println("cvc5 should report SAT."); System.out.println("Result from cvc5 is: " + slv.checkSat()); slv.pop(); System.out.println("Thus the maximum value of (y - x) is 2/3."); } Context.deletePointers(); } }