/****************************************************************************** * Top contributors (to current version): * Mudathir Mohamed, Daniel Larraz, Andres Noetzli * * This file is part of the cvc5 project. * * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * A simple demonstration of reasoning about sets with cvc5. */ import static io.github.cvc5.Kind.*; import io.github.cvc5.*; public class Sets { public static void main(String args[]) throws CVC5ApiException { TermManager tm = new TermManager(); Solver slv = new Solver(tm); { // Optionally, set the logic. We need at least UF for equality predicate, // integers (LIA) and sets (FS). slv.setLogic("QF_UFLIAFS"); // Produce models slv.setOption("produce-models", "true"); slv.setOption("output-language", "smt2"); Sort integer = tm.getIntegerSort(); Sort set = tm.mkSetSort(integer); // Verify union distributions over intersection // (A union B) intersection C = (A intersection C) union (B intersection C) { Term A = tm.mkConst(set, "A"); Term B = tm.mkConst(set, "B"); Term C = tm.mkConst(set, "C"); Term unionAB = tm.mkTerm(SET_UNION, A, B); Term lhs = tm.mkTerm(SET_INTER, unionAB, C); Term intersectionAC = tm.mkTerm(SET_INTER, A, C); Term intersectionBC = tm.mkTerm(SET_INTER, B, C); Term rhs = tm.mkTerm(SET_UNION, intersectionAC, intersectionBC); Term theorem = tm.mkTerm(EQUAL, lhs, rhs); System.out.println( "cvc5 reports: " + theorem + " is " + slv.checkSatAssuming(theorem.notTerm()) + "."); } // Verify set.empty is a subset of any set { Term A = tm.mkConst(set, "A"); Term emptyset = tm.mkEmptySet(set); Term theorem = tm.mkTerm(SET_SUBSET, emptyset, A); System.out.println( "cvc5 reports: " + theorem + " is " + slv.checkSatAssuming(theorem.notTerm()) + "."); } // Find me an element in {1, 2} intersection {2, 3}, if there is one. { Term one = tm.mkInteger(1); Term two = tm.mkInteger(2); Term three = tm.mkInteger(3); Term singleton_one = tm.mkTerm(SET_SINGLETON, one); Term singleton_two = tm.mkTerm(SET_SINGLETON, two); Term singleton_three = tm.mkTerm(SET_SINGLETON, three); Term one_two = tm.mkTerm(SET_UNION, singleton_one, singleton_two); Term two_three = tm.mkTerm(SET_UNION, singleton_two, singleton_three); Term intersection = tm.mkTerm(SET_INTER, one_two, two_three); Term x = tm.mkConst(integer, "x"); Term e = tm.mkTerm(SET_MEMBER, x, intersection); Result result = slv.checkSatAssuming(e); System.out.println("cvc5 reports: " + e + " is " + result + "."); if (result.isSat()) { System.out.println("For instance, " + slv.getValue(x) + " is a member."); } } } Context.deletePointers(); } }