############################################################################### # Top contributors (to current version): # Alex Ozdemir, Anjiang-Wei # # This file is part of the cvc5 project. # # Copyright (c) 2009-2025 by the authors listed in the file AUTHORS # in the top-level source directory and their institutional affiliations. # All rights reserved. See the file COPYING in the top-level source # directory for licensing information. # ############################################################################# # # An example of solving floating-point problems with cvc5's Python API. # # This example shows to create floating-point types, variables and expressions, # and how to create rounding mode constants by solving toy problems. The # example also shows making special values (such as NaN and +oo) and converting # an IEEE 754-2008 bit-vector to a floating-point number. ## from cvc5.pythonic import * if __name__ == "__main__": x, y, z = FPs("x y z", Float32()) set_default_rounding_mode(RoundNearestTiesToEven()) # FP addition is *not* commutative. This finds a counterexample. assert not is_tautology(fpEQ(x + y, y + x)) # Without NaN or infinities, it is commutative. This proof succeeds. assert is_tautology( Implies( Not(Or(fpIsNaN(x), fpIsNaN(y), fpIsInf(x), fpIsInf(y))), fpEQ(x + y, y + x) ) ) pi = FPVal(+3.14, Float32()) # FP addition is *not* associative in the range (-pi, pi). assert not is_tautology( Implies( And(x >= -pi, x <= pi, y >= -pi, y <= pi, z >= -pi, z <= pi), fpEQ((x + y) + z, x + (y + z)), ) )