#!/usr/bin/env python ############################################################################### # Top contributors (to current version): # Aina Niemetz, Makai Mann, Mathias Preiner # # This file is part of the cvc5 project. # # Copyright (c) 2009-2022 by the authors listed in the file AUTHORS # in the top-level source directory and their institutional affiliations. # All rights reserved. See the file COPYING in the top-level source # directory for licensing information. # ############################################################################# # # A simple demonstration of the solving capabilities of the cvc5 # floating point solver through the Python API contributed by Eva # Darulova. This requires building cvc5 with symfpu. ## import cvc5 from cvc5 import Kind, RoundingMode if __name__ == "__main__": slv = cvc5.Solver() slv.setOption("produce-models", "true") slv.setLogic("QF_FP") # single 32-bit precision fp32 = slv.mkFloatingPointSort(8, 24) # the standard rounding mode rm = slv.mkRoundingMode(RoundingMode.ROUND_NEAREST_TIES_TO_EVEN) # create a few single-precision variables x = slv.mkConst(fp32, 'x') y = slv.mkConst(fp32, 'y') z = slv.mkConst(fp32, 'z') # check floating-point arithmetic is commutative, i.e. x + y == y + x commutative = slv.mkTerm( Kind.FLOATINGPOINT_EQ, slv.mkTerm(Kind.FLOATINGPOINT_ADD, rm, x, y), slv.mkTerm(Kind.FLOATINGPOINT_ADD, rm, y, x)) slv.push() slv.assertFormula(slv.mkTerm(Kind.NOT, commutative)) print("Checking floating-point commutativity") print("Expect SAT (property does not hold for NaN and Infinities).") print("cvc5:", slv.checkSat()) print("Model for x:", slv.getValue(x)) print("Model for y:", slv.getValue(y)) # disallow NaNs and Infinities slv.assertFormula(slv.mkTerm( Kind.NOT, slv.mkTerm(Kind.FLOATINGPOINT_IS_NAN, x))) slv.assertFormula(slv.mkTerm( Kind.NOT, slv.mkTerm(Kind.FLOATINGPOINT_IS_INF, x))) slv.assertFormula(slv.mkTerm( Kind.NOT, slv.mkTerm(Kind.FLOATINGPOINT_IS_NAN, y))) slv.assertFormula(slv.mkTerm( Kind.NOT, slv.mkTerm(Kind.FLOATINGPOINT_IS_INF, y))) print("Checking floating-point commutativity assuming x and y are not NaN or Infinity") print("Expect UNSAT.") print("cvc5:", slv.checkSat()) # check floating-point arithmetic is not associative slv.pop() # constrain x, y, z between -3.14 and 3.14 (also disallows NaN and infinity) a = slv.mkFloatingPoint( 8, 24, slv.mkBitVector(32, "11000000010010001111010111000011", 2)) # -3.14 b = slv.mkFloatingPoint( 8, 24, slv.mkBitVector(32, "01000000010010001111010111000011", 2)) # 3.14 bounds_x = slv.mkTerm( Kind.AND, slv.mkTerm(Kind.FLOATINGPOINT_LEQ, a, x), slv.mkTerm(Kind.FLOATINGPOINT_LEQ, x, b)) bounds_y = slv.mkTerm( Kind.AND, slv.mkTerm(Kind.FLOATINGPOINT_LEQ, a, y), slv.mkTerm(Kind.FLOATINGPOINT_LEQ, y, b)) bounds_z = slv.mkTerm( Kind.AND, slv.mkTerm(Kind.FLOATINGPOINT_LEQ, a, z), slv.mkTerm(Kind.FLOATINGPOINT_LEQ, z, b)) slv.assertFormula(slv.mkTerm( Kind.AND, slv.mkTerm(Kind.AND, bounds_x, bounds_y), bounds_z)) # (x + y) + z == x + (y + z) lhs = slv.mkTerm( Kind.FLOATINGPOINT_ADD, rm, slv.mkTerm(Kind.FLOATINGPOINT_ADD, rm, x, y), z) rhs = slv.mkTerm( Kind.FLOATINGPOINT_ADD, rm, x, slv.mkTerm(Kind.FLOATINGPOINT_ADD, rm, y, z)) associative = slv.mkTerm( Kind.NOT, slv.mkTerm(Kind.FLOATINGPOINT_EQ, lhs, rhs)) slv.assertFormula(associative) print("Checking floating-point associativity") print("Expect SAT.") print("cvc5:", slv.checkSat()) print("Model for x:", slv.getValue(x)) print("Model for y:", slv.getValue(y)) print("Model for z:", slv.getValue(z))