/****************************************************************************** * Top contributors (to current version): * Abdalrhman Mohamed, Mathias Preiner, Andrew Reynolds * * This file is part of the cvc5 project. * * Copyright (c) 2009-2022 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * A simple demonstration of the Sygus API. * * A simple demonstration of how to use the Sygus API to synthesize max and min * functions. */ #include #include #include "utils.h" using namespace cvc5; int main() { Solver slv; // required options slv.setOption("sygus", "true"); slv.setOption("incremental", "false"); // set the logic slv.setLogic("LIA"); Sort integer = slv.getIntegerSort(); Sort boolean = slv.getBooleanSort(); // declare input variables for the functions-to-synthesize Term x = slv.mkVar(integer, "x"); Term y = slv.mkVar(integer, "y"); // declare the grammar non-terminals Term start = slv.mkVar(integer, "Start"); Term start_bool = slv.mkVar(boolean, "StartBool"); // define the rules Term zero = slv.mkInteger(0); Term one = slv.mkInteger(1); Term plus = slv.mkTerm(ADD, {start, start}); Term minus = slv.mkTerm(SUB, {start, start}); Term ite = slv.mkTerm(ITE, {start_bool, start, start}); Term And = slv.mkTerm(AND, {start_bool, start_bool}); Term Not = slv.mkTerm(NOT, {start_bool}); Term leq = slv.mkTerm(LEQ, {start, start}); // create the grammar object Grammar g = slv.mkGrammar({x, y}, {start, start_bool}); // bind each non-terminal to its rules g.addRules(start, {zero, one, x, y, plus, minus, ite}); g.addRules(start_bool, {And, Not, leq}); // declare the functions-to-synthesize. Optionally, provide the grammar // constraints Term max = slv.synthFun("max", {x, y}, integer, g); Term min = slv.synthFun("min", {x, y}, integer); // declare universal variables. Term varX = slv.declareSygusVar("x", integer); Term varY = slv.declareSygusVar("y", integer); Term max_x_y = slv.mkTerm(APPLY_UF, {max, varX, varY}); Term min_x_y = slv.mkTerm(APPLY_UF, {min, varX, varY}); // add semantic constraints // (constraint (>= (max x y) x)) slv.addSygusConstraint(slv.mkTerm(GEQ, {max_x_y, varX})); // (constraint (>= (max x y) y)) slv.addSygusConstraint(slv.mkTerm(GEQ, {max_x_y, varY})); // (constraint (or (= x (max x y)) // (= y (max x y)))) slv.addSygusConstraint(slv.mkTerm(OR, {slv.mkTerm(EQUAL, {max_x_y, varX}), slv.mkTerm(EQUAL, {max_x_y, varY})})); // (constraint (= (+ (max x y) (min x y)) // (+ x y))) slv.addSygusConstraint(slv.mkTerm( EQUAL, {slv.mkTerm(ADD, {max_x_y, min_x_y}), slv.mkTerm(ADD, {varX, varY})})); // print solutions if available if (slv.checkSynth().hasSolution()) { // Output should be equivalent to: // ( // (define-fun max ((x Int) (y Int)) Int (ite (<= x y) y x)) // (define-fun min ((x Int) (y Int)) Int (ite (<= x y) x y)) // ) std::vector terms = {max, min}; utils::printSynthSolutions(terms, slv.getSynthSolutions(terms)); } return 0; }