/****************************************************************************** * Top contributors (to current version): * Mudathir Mohamed, Andrew Reynolds, Andres Noetzli * * This file is part of the cvc5 project. * * Copyright (c) 2009-2022 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * A simple demonstration of the Sygus API. * * A simple demonstration of how to use Grammar to add syntax constraints to * the Sygus solution for the identity function. This is a direct translation * of sygus-grammar.cpp. */ import static io.github.cvc5.Kind.*; import io.github.cvc5.*; public class SygusGrammar { public static void main(String args[]) throws CVC5ApiException { Solver slv = new Solver(); { // required options slv.setOption("sygus", "true"); slv.setOption("incremental", "false"); // set the logic slv.setLogic("LIA"); Sort integer = slv.getIntegerSort(); // declare input variable for the function-to-synthesize Term x = slv.mkVar(integer, "x"); // declare the grammar non-terminal Term start = slv.mkVar(integer, "Start"); // define the rules Term zero = slv.mkInteger(0); Term neg_x = slv.mkTerm(NEG, x); Term plus = slv.mkTerm(ADD, x, start); // create the grammar object Grammar g1 = slv.mkGrammar(new Term[] {x}, new Term[] {start}); // bind each non-terminal to its rules g1.addRules(start, new Term[] {neg_x, plus}); // copy the first grammar with all of its non-terminals and their rules Grammar g2 = new Grammar(g1); Grammar g3 = new Grammar(g1); // add parameters as rules for the start symbol. Similar to "(Variable Int)" g2.addAnyVariable(start); // declare the functions-to-synthesize Term id1 = slv.synthFun("id1", new Term[] {x}, integer, g1); Term id2 = slv.synthFun("id2", new Term[] {x}, integer, g2); g3.addRule(start, zero); Term id3 = slv.synthFun("id3", new Term[] {x}, integer, g3); // g1 is reusable as long as it remains unmodified after first use Term id4 = slv.synthFun("id4", new Term[] {x}, integer, g1); // declare universal variables. Term varX = slv.declareSygusVar("x", integer); Term id1_x = slv.mkTerm(APPLY_UF, id1, varX); Term id2_x = slv.mkTerm(APPLY_UF, id2, varX); Term id3_x = slv.mkTerm(APPLY_UF, id3, varX); Term id4_x = slv.mkTerm(APPLY_UF, id4, varX); // add semantic constraints // (constraint (= (id1 x) (id2 x) (id3 x) (id4 x) x)) slv.addSygusConstraint(slv.mkTerm(EQUAL, new Term[] {id1_x, id2_x, id3_x, id4_x, varX})); // print solutions if available if (slv.checkSynth().hasSolution()) { // Output should be equivalent to: // ( // (define-fun id1 ((x Int)) Int (+ x (+ x (- x)))) // (define-fun id2 ((x Int)) Int x) // (define-fun id3 ((x Int)) Int (+ x 0)) // (define-fun id4 ((x Int)) Int (+ x (+ x (- x)))) // ) Term[] terms = new Term[] {id1, id2, id3, id4}; Utils.printSynthSolutions(terms, slv.getSynthSolutions(terms)); } } } }