Enable CI for Junit tests (#7436)

This PR enables CI for java tests by adding --java-bindings to ci.yml.
It also replaces the unreliable finalize method and instead uses AutoCloseable and explicit close method to clean up dynamic memory allocated by java native interface.
The PR fixes compile errors for SolverTest.java and runtime errors for Solver.defineFun.
This commit is contained in:
mudathirmahgoub
2021-11-03 16:32:10 -05:00
committed by GitHub
parent b8504ef92e
commit 690a392656
57 changed files with 1281 additions and 1202 deletions

View File

@@ -56,84 +56,85 @@ public class SygusFun
{
public static void main(String args[]) throws CVC5ApiException
{
Solver slv = new Solver();
// required options
slv.setOption("lang", "sygus2");
slv.setOption("incremental", "false");
// set the logic
slv.setLogic("LIA");
Sort integer = slv.getIntegerSort();
Sort bool = slv.getBooleanSort();
// declare input variables for the functions-to-synthesize
Term x = slv.mkVar(integer, "x");
Term y = slv.mkVar(integer, "y");
// declare the grammar non-terminals
Term start = slv.mkVar(integer, "Start");
Term start_bool = slv.mkVar(bool, "StartBool");
// define the rules
Term zero = slv.mkInteger(0);
Term one = slv.mkInteger(1);
Term plus = slv.mkTerm(PLUS, start, start);
Term minus = slv.mkTerm(MINUS, start, start);
Term ite = slv.mkTerm(ITE, start_bool, start, start);
Term And = slv.mkTerm(AND, start_bool, start_bool);
Term Not = slv.mkTerm(NOT, start_bool);
Term leq = slv.mkTerm(LEQ, start, start);
// create the grammar object
Grammar g = slv.mkSygusGrammar(new Term[] {x, y}, new Term[] {start, start_bool});
// bind each non-terminal to its rules
g.addRules(start, new Term[] {zero, one, x, y, plus, minus, ite});
g.addRules(start_bool, new Term[] {And, Not, leq});
// declare the functions-to-synthesize. Optionally, provide the grammar
// constraints
Term max = slv.synthFun("max", new Term[] {x, y}, integer, g);
Term min = slv.synthFun("min", new Term[] {x, y}, integer);
// declare universal variables.
Term varX = slv.mkSygusVar(integer, "x");
Term varY = slv.mkSygusVar(integer, "y");
Term max_x_y = slv.mkTerm(APPLY_UF, max, varX, varY);
Term min_x_y = slv.mkTerm(APPLY_UF, min, varX, varY);
// add semantic constraints
// (constraint (>= (max x y) x))
slv.addSygusConstraint(slv.mkTerm(GEQ, max_x_y, varX));
// (constraint (>= (max x y) y))
slv.addSygusConstraint(slv.mkTerm(GEQ, max_x_y, varY));
// (constraint (or (= x (max x y))
// (= y (max x y))))
slv.addSygusConstraint(
slv.mkTerm(OR, slv.mkTerm(EQUAL, max_x_y, varX), slv.mkTerm(EQUAL, max_x_y, varY)));
// (constraint (= (+ (max x y) (min x y))
// (+ x y)))
slv.addSygusConstraint(
slv.mkTerm(EQUAL, slv.mkTerm(PLUS, max_x_y, min_x_y), slv.mkTerm(PLUS, varX, varY)));
// print solutions if available
if (slv.checkSynth().isUnsat())
try (Solver slv = new Solver())
{
// Output should be equivalent to:
// (
// (define-fun max ((x Int) (y Int)) Int (ite (<= x y) y x))
// (define-fun min ((x Int) (y Int)) Int (ite (<= x y) x y))
// )
Term[] terms = new Term[] {max, min};
Utils.printSynthSolutions(terms, slv.getSynthSolutions(terms));
// required options
slv.setOption("lang", "sygus2");
slv.setOption("incremental", "false");
// set the logic
slv.setLogic("LIA");
Sort integer = slv.getIntegerSort();
Sort bool = slv.getBooleanSort();
// declare input variables for the functions-to-synthesize
Term x = slv.mkVar(integer, "x");
Term y = slv.mkVar(integer, "y");
// declare the grammar non-terminals
Term start = slv.mkVar(integer, "Start");
Term start_bool = slv.mkVar(bool, "StartBool");
// define the rules
Term zero = slv.mkInteger(0);
Term one = slv.mkInteger(1);
Term plus = slv.mkTerm(PLUS, start, start);
Term minus = slv.mkTerm(MINUS, start, start);
Term ite = slv.mkTerm(ITE, start_bool, start, start);
Term And = slv.mkTerm(AND, start_bool, start_bool);
Term Not = slv.mkTerm(NOT, start_bool);
Term leq = slv.mkTerm(LEQ, start, start);
// create the grammar object
Grammar g = slv.mkSygusGrammar(new Term[] {x, y}, new Term[] {start, start_bool});
// bind each non-terminal to its rules
g.addRules(start, new Term[] {zero, one, x, y, plus, minus, ite});
g.addRules(start_bool, new Term[] {And, Not, leq});
// declare the functions-to-synthesize. Optionally, provide the grammar
// constraints
Term max = slv.synthFun("max", new Term[] {x, y}, integer, g);
Term min = slv.synthFun("min", new Term[] {x, y}, integer);
// declare universal variables.
Term varX = slv.mkSygusVar(integer, "x");
Term varY = slv.mkSygusVar(integer, "y");
Term max_x_y = slv.mkTerm(APPLY_UF, max, varX, varY);
Term min_x_y = slv.mkTerm(APPLY_UF, min, varX, varY);
// add semantic constraints
// (constraint (>= (max x y) x))
slv.addSygusConstraint(slv.mkTerm(GEQ, max_x_y, varX));
// (constraint (>= (max x y) y))
slv.addSygusConstraint(slv.mkTerm(GEQ, max_x_y, varY));
// (constraint (or (= x (max x y))
// (= y (max x y))))
slv.addSygusConstraint(
slv.mkTerm(OR, slv.mkTerm(EQUAL, max_x_y, varX), slv.mkTerm(EQUAL, max_x_y, varY)));
// (constraint (= (+ (max x y) (min x y))
// (+ x y)))
slv.addSygusConstraint(
slv.mkTerm(EQUAL, slv.mkTerm(PLUS, max_x_y, min_x_y), slv.mkTerm(PLUS, varX, varY)));
// print solutions if available
if (slv.checkSynth().isUnsat())
{
// Output should be equivalent to:
// (
// (define-fun max ((x Int) (y Int)) Int (ite (<= x y) y x))
// (define-fun min ((x Int) (y Int)) Int (ite (<= x y) x y))
// )
Term[] terms = new Term[] {max, min};
Utils.printSynthSolutions(terms, slv.getSynthSolutions(terms));
}
}
}
}
}