2022-04-04 19:49:30 -07:00
|
|
|
from cvc5.pythonic import *
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
x, y, z = FPs("x y z", Float32())
|
|
|
|
|
set_default_rounding_mode(RoundNearestTiesToEven())
|
|
|
|
|
|
|
|
|
|
# FP addition is *not* commutative. This finds a counterexample.
|
|
|
|
|
assert not is_tautology(fpEQ(x + y, y + x))
|
|
|
|
|
|
2023-05-19 10:26:40 -07:00
|
|
|
# Without NaN or infinities, it is commutative. This proof succeeds.
|
2022-04-04 19:49:30 -07:00
|
|
|
assert is_tautology(
|
|
|
|
|
Implies(
|
|
|
|
|
Not(Or(fpIsNaN(x), fpIsNaN(y), fpIsInf(x), fpIsInf(y))), fpEQ(x + y, y + x)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
pi = FPVal(+3.14, Float32())
|
|
|
|
|
|
|
|
|
|
# FP addition is *not* associative in the range (-pi, pi).
|
|
|
|
|
assert not is_tautology(
|
|
|
|
|
Implies(
|
|
|
|
|
And(x >= -pi, x <= pi, y >= -pi, y <= pi, z >= -pi, z <= pi),
|
|
|
|
|
fpEQ((x + y) + z, x + (y + z)),
|
|
|
|
|
)
|
|
|
|
|
)
|