having a self-referential tuple, which is possible from C code. Nor did
object's tp_str consider that a type's tp_str could do something that could
lead to an inifinite recursion. Py_ReprEnter() and Py_EnterRecursiveCall(),
respectively, fixed the issues. (Backport of r58288 from trunk to 2.5.)
I modified this patch some by fixing style, some error checking, and adding
XXX comments. This patch requires review and some changes are to be expected.
I'm checking in now to get the greatest possible review and establish a
baseline for moving forward. I don't want this to hold up release if possible.
using a custom, nearly-identical macro. This probably changes how some of
these functions are compiled, which may result in fractionally slower (or
faster) execution. Considering the nature of traversal, visiting much of the
address space in unpredictable patterns, I'd argue the code readability and
maintainability is well worth it ;P
In C++, it's an error to pass a string literal to a char* function
without a const_cast(). Rather than require every C++ extension
module to put a cast around string literals, fix the API to state the
const-ness.
I focused on parts of the API where people usually pass literals:
PyArg_ParseTuple() and friends, Py_BuildValue(), PyMethodDef, the type
slots, etc. Predictably, there were a large set of functions that
needed to be fixed as a result of these changes. The most pervasive
change was to make the keyword args list passed to
PyArg_ParseTupleAndKewords() to be a const char *kwlist[].
One cast was required as a result of the changes: A type object
mallocs the memory for its tp_doc slot and later frees it.
PyTypeObject says that tp_doc is const char *; but if the type was
created by type_new(), we know it is safe to cast to char *.
the newly created tuples, but tuples added in the freelist are now cleared in
tupledealloc already (which is very cheap, because we are already
Py_XDECREF'ing all elements anyway).
Python should have a standard Py_ZAP macro like ZAP in pystate.c.