"s#" will now return a pointer to the default encoded string data
of the Unicode object instead of a pointer to the raw UTF-16
data.
The latter is still available via PyObject_AsReadBuffer().
The patch also adds an optimization for string objects which is
based on the fact that string objects return the raw character data
for getreadbuffer access and are always single-segment.
which implements the automatic conversion from Unicode to a string
object using the default encoding.
The new API is then put to use to have eval() and exec accept
Unicode objects as code parameter. This closes bugs #110924
and #113890.
As side-effect, the traditional C APIs PyString_Size() and
PyString_AsString() will also accept Unicode objects as
parameters.
When reading a short, sign-extend on platforms where shorts are
bigger than 16 bits.
When reading a long, repair the unportable sign extension that was
being done for 64-bit machines (it assumed that signed right shift
sign-extends).
I can't test this, so I'm just checking it in with blind faith in Andy.
I've tested that it doesn't broeak a non-Pth build on Linux.
Changes include:
- There's a --with-pth configure option.
- Instead of _GNU_PTH, we test for HAVE_PTH.
- Better signal handling.
- (The config.h.in file is regenerated in a slightly different order.)
can cause it to get called by multiple threads simultaneously.
Ditto for PyInterpreterState_Delete.
Of the former, the docs say "The interpreter lock need not be held, but may
be held if it is necessary to serialize calls to this function". This
kinda implies it both is and isn't thread-safe.
Of the latter, the docs merely say "The interpreter lock need not be
held.", and the clause about serializing is absent.
I expect it was *believed* these are both thread-safe, and the bit about
serializing via the global lock was meant as a permission rather than a
caution.
I also expect we've never seen a problem here because the Python core
(prior to the _PyPclose fix) only calls these functions once per run.
The Py_NewInterpreter subsystem exposed by the C API (but not used by
Python itself) also calls them, but that subsystem appears to be very
rarely used.
Whatever, they're both thread-safe now.