PyEval_EvalCodeEx(): increment tstate->recursion_depth around the
decref of the frame, because the C stack for this call is still in
use and the decref can lead to __del__ methods getting called.
While this gives tstate->recursion_depth a value proportional to the
depth of the C stack (instead of a small constant no matter how
deeply __del__s recurse), it's not enough to stop the reported crash
when using the default recursion limit on Windows.
Bugfix candidate.
This patch boosts performance for comparing identical string object
by some 20% on my machine while not causing any noticable slow-down
for other operations (according to tests done with pybench).
The new profiler event stream includes a "return" event even when an
exception is being propogated, but the machinery that called the profile
hook did not save & restore the exception. In debug mode, the exception
was detected during the execution of the profile callback, which did not
have the proper internal flags set for the exception. Saving & restoring
the exception state solves the problem.
The profiler does not need to know anything about the exception state,
so we no longer call it when an exception is raised. We do, however,
make sure we *always* call the profiler when we exit a frame. This
ensures that timing events are more easily isolated by a profiler and
finally clauses that do a lot of work don't have their time
mis-allocated.
When an exception is propogated out of the frame, the C callback for
the profiler now receives a PyTrace_RETURN event with an arg of NULL;
the Python-level profile hook function will see a 'return' event with
an arg of None. This means that from Python it is impossible for the
profiler to determine if the frame exited with an exception or if it
returned None, but this doesn't matter for profiling. A C-based
profiler could tell the difference, but this doesn't seem important.
ceval.c:eval_frame(): Simplify the code in two places so that the
profiler is called for every exit from a frame
and not for exceptions.
sysmodule.c:profile_trampoline(): Make sure we don't expose Python
code to NULL; use None instead.
It's possible for PyErr_NormalizeException() to set the traceback
pointer to NULL. I'm not sure how to provoke this directly from
Python, although it may be possible. The error occurs when an
exception is set using PyErr_SetObject() and another exception occurs
while PyErr_NormalizeException() is creating the exception instance.
XXX As a result of this change, it's possible for an exception to
occur but sys.last_traceback to be left undefined. Not sure if this
is a problem.
popped frame-block. What an embarrassing bug! Especially for Jeremy, since
he accepted the patch :-)
This fixes SF bugs #463359 and #462937, and possibly other, *very* obscure
bugs with very deeply nested loops that continue the loop and then break out
of it or raise an exception.
compatibility, this required all places where an array of "struct
memberlist" structures was declared that is referenced from a type's
tp_members slot to change the type of the structure to PyMemberDef;
"struct memberlist" is now only used by old code that still calls
PyMember_Get/Set. The code in PyObject_GenericGetAttr/SetAttr now
calls the new APIs PyMember_GetOne/SetOne, which take a PyMemberDef
argument.
As examples, I added actual docstrings to the attributes of a few
types: file, complex, instance method, super, and xxsubtype.spamlist.
Also converted the symtable to new style getattr.
backwards compatibility. When using the class of the first base as
the metaclass, use its __class__ attribute in preference over its
ob_type slot. This ensures that we can still use classic classes as
metaclasse, as shown in the original "Metaclasses" essay. This also
makes all the examples in Demo/metaclasses/ work again (maybe these
should be turned into a test suite?).
Change to get/set/del slice operations so that if the object doesn't
support slicing, *or* if either of the slice arguments is not an int
or long, we construct a slice object and call the get/set/del item
operation instead. This makes it possible to design classes that
support slice arguments of non-integral types.
CO_FUTURE_DIVISION flag. Redid this to use Jeremy's PyCF_MASK #define
instead, so we dont have to remember to fiddle individual feature names
here again.
pythonrun.h: Also #define a PyCF_MASK_OBSOLETE mask. This isn't used
yet, but will be as part of the PEP 264 implementation (compile() mustn't
raise an error just because old code uses a flag name that's become
obsolete; a warning may be appropriate, but not an error; so compile() has
to know about obsolete flags too, but nobody is going to remember to
update compile() with individual obsolete flag names across releases either
-- i.e., this is the flip side of PyEval_MergeCompilerFlags's oversight).