No longer use deprecated aliases to functions:
* Replace PyMem_MALLOC() with PyMem_Malloc()
* Replace PyMem_REALLOC() with PyMem_Realloc()
* Replace PyMem_FREE() with PyMem_Free()
* Replace PyMem_Del() with PyMem_Free()
* Replace PyMem_DEL() with PyMem_Free()
Modify also the PyMem_DEL() macro to use directly PyMem_Free().
Currently walruses are not allowerd in set literals and set comprehensions:
>>> {y := 4, 4**2, 3**3}
File "<stdin>", line 1
{y := 4, 4**2, 3**3}
^
SyntaxError: invalid syntax
but they should be allowed as well per PEP 572
Call _PyAST_Fini() on all interpreters, not only on the main
interpreter. Also, call it ealier to fix a reference leak.
Python types contain a reference to themselves in in their
PyTypeObject.tp_mro member. _PyAST_Fini() must called before the last
GC collection to destroy AST types.
_PyInterpreterState_Clear() now calls _PyAST_Fini(). It now also
calls _PyWarnings_Fini() on subinterpeters, not only on the main
interpreter.
Add an assertion in AST init_types() to ensure that the _ast module
is no longer used after _PyAST_Fini() has been called.
The ast module internal state is now per interpreter.
* Rename "astmodulestate" to "struct ast_state"
* Add pycore_ast.h internal header: the ast_state structure is now
declared in pycore_ast.h.
* Add PyInterpreterState.ast (struct ast_state)
* Remove get_ast_state()
* Rename get_global_ast_state() to get_ast_state()
* PyAST_obj2mod() now handles get_ast_state() failures
Left-recursive rules need to check for errors explicitly, since
even if the rule returns NULL, the parsing might continue and lead
to long-distance failures.
Co-authored-by: Pablo Galindo <Pablogsal@gmail.com>
* Implement running the parser a second time for the errors messages
The first parser run is only responsible for detecting whether
there is a `SyntaxError` or not. If there isn't the AST gets returned.
Otherwise, the parser is run a second time with all the `invalid_*`
rules enabled so that all the customized error messages get produced.
- Use the proper asdl sequence when creating empty arguments
- Remove reduntant casts (thanks to new typed asdl_sequences)
- Remove MarshalPrototypeVisitor and some utilities from asdl generator
- Fix the header of `Python/ast.c` (kept from pgen times)
Automerge-Triggered-By: @pablogsal
* Add new capability to the PEG parser to type variable assignments. For instance:
```
| a[asdl_stmt_seq*]=';'.small_stmt+ [';'] NEWLINE { a }
```
* Add new sequence types from the asdl definition (automatically generated)
* Make `asdl_seq` type a generic aliasing pointer type.
* Create a new `asdl_generic_seq` for the generic case using `void*`.
* The old `asdl_seq_GET`/`ast_seq_SET` macros now are typed.
* New `asdl_seq_GET_UNTYPED`/`ast_seq_SET_UNTYPED` macros for dealing with generic sequences.
* Changes all possible `asdl_seq` types to use specific versions everywhere.
Partially revert commit ac46eb4ad6:
"bpo-38113: Update the Python-ast.c generator to PEP384 (gh-15957)".
Using a module state per module instance is causing subtle practical
problems.
For example, the Mercurial project replaces the __import__() function
to implement lazy import, whereas Python expected that "import _ast"
always return a fully initialized _ast module.
Add _PyAST_Fini() to clear the state at exit.
The _ast module has no state (set _astmodule.m_size to 0). Remove
astmodule_traverse(), astmodule_clear() and astmodule_free()
functions.
This program can segfault the parser by stack overflow:
```
import ast
code = "f(" + ",".join(['a' for _ in range(100000)]) + ")"
print("Ready!")
ast.parse(code)
```
the reason is that the rule for arguments has a simple recursion when collecting args:
args[expr_ty]:
[...]
| a=named_expression b=[',' c=args { c }] {
[...] }
This consolidates the handling of my_fgets return values, so that interrupts are always handled, even if they come after EOF.
I believe PyOS_StdioReadline is still buggy in that I/O errors will not result in a proper Python exception being set. However, that is a separate issue.