In the experimental isolated subinterpreters build mode,
_PyThreadState_GET() gets the autoTSSkey variable and
_PyThreadState_Swap() sets the autoTSSkey variable.
* Add _PyThreadState_GetTSS()
* _PyRuntimeState_GetThreadState() and _PyThreadState_GET()
return _PyThreadState_GetTSS()
* PyEval_SaveThread() sets the autoTSSkey variable to current Python
thread state rather than NULL.
* eval_frame_handle_pending() doesn't check that
_PyThreadState_Swap() result is NULL.
* _PyThreadState_Swap() gets the current Python thread state with
_PyThreadState_GetTSS() rather than
_PyRuntimeGILState_GetThreadState().
* PyGILState_Ensure() no longer checks _PyEval_ThreadsInitialized()
since it cannot access the current interpreter.
* Replace PY_INT64_T with int64_t
* Replace PY_UINT32_T with uint32_t
* Replace PY_UINT64_T with uint64_t
sha3module.c no longer checks if PY_UINT64_T is defined since it's
always defined and uint64_t is always available on platforms
supported by Python.
Rename _PyInterpreterState_GET_UNSAFE() to _PyInterpreterState_GET()
for consistency with _PyThreadState_GET() and to have a shorter name
(help to fit into 80 columns).
Add also "assert(tstate != NULL);" to the function.
Don't access PyInterpreterState.config member directly anymore, but
use new functions:
* _PyInterpreterState_GetConfig()
* _PyInterpreterState_SetConfig()
* _Py_GetConfig()
PyInterpreterState_New() is now responsible to create pending calls,
PyInterpreterState_Delete() now deletes pending calls.
* Rename _PyEval_InitThreads() to _PyEval_InitGIL() and rename
_PyEval_InitGIL() to _PyEval_FiniGIL().
* _PyEval_InitState() and PyEval_FiniState() now create and delete
pending calls. _PyEval_InitState() now returns -1 on memory
allocation failure.
* Add init_interp_create_gil() helper function: code shared by
Py_NewInterpreter() and Py_InitializeFromConfig().
* init_interp_create_gil() now also calls _PyEval_FiniGIL(),
_PyEval_InitGIL() and _PyGILState_Init() in subinterpreters, but
these functions now do nothing when called from a subinterpreter.
PyThreadState.frame is a borrowed reference, not a strong reference:
PyThreadState_Clear() must not call Py_CLEAR(tstate->frame).
Remove test_threading.test_warnings_at_exit(): we cannot warranty
that the Python thread state of daemon threads is cleared in a
reliable way during Python shutdown.
Remove _PyRuntime.getframe hook and remove _PyThreadState_GetFrame
macro which was an alias to _PyRuntime.getframe. They were only
exposed by the internal C API. Remove also PyThreadFrameGetter type.
COMPUTE_EVAL_BREAKER() now also checks if the Python thread state
belongs to the main interpreter. Don't break the evaluation loop if
there are pending signals but the Python thread state it belongs to a
subinterpeter.
* Add _Py_IsMainThread() function.
* Add _Py_ThreadCanHandleSignals() function.
* _PyThreadState_DeleteCurrent() now takes tstate rather than
runtime.
* Add ensure_tstate_not_null() helper to pystate.c.
* Add _PyEval_ReleaseLock() function.
* _PyThreadState_DeleteCurrent() now calls
_PyEval_ReleaseLock(tstate) and frees PyThreadState memory after
this call, not before.
* PyGILState_Release(): rename "tcur" variable to "tstate".
* Rename _PyInterpreterState_Get() to PyInterpreterState_Get() and
move it the limited C API.
* Add _PyInterpreterState_Get() alias to PyInterpreterState_Get() for
backward compatibility with Python 3.8.
PyInterpreterState.eval_frame function now requires a tstate (Python
thread state) parameter.
Add private functions to the C API to get and set the frame
evaluation function:
* Add tstate parameter to _PyFrameEvalFunction function type.
* Add _PyInterpreterState_GetEvalFrameFunc() and
_PyInterpreterState_SetEvalFrameFunc() functions.
* Add tstate parameter to _PyEval_EvalFrameDefault().