TLS key only if the thread that called fork() had an associated auto thread
state (this might not be the case for example for a thread created outside of
Python calling into a subinterpreter).
TLS key only if the thread that called fork() had an associated auto thread
state (this might not be the case for example for a thread created outside of
Python calling into a subinterpreter).
Issue #26161: Use Py_uintptr_t instead of void* for atomic pointers in
pyatomic.h. Use atomic_uintptr_t when <stdatomic.h> is used.
Using void* causes compilation warnings depending on which implementation of
atomic types is used.
Issue #26558: If Py_FatalError() is called without the GIL, don't try to print
the current exception, nor try to flush stdout and stderr: only dump the
traceback of Python threads.
Issue #25843: When compiling code, don't merge constants if they are equal but
have a different types. For example, "f1, f2 = lambda: 1, lambda: 1.0" is now
correctly compiled to two different functions: f1() returns 1 (int) and f2()
returns 1.0 (int), even if 1 and 1.0 are equal.
Add a new _PyCode_ConstantKey() private function.
Issue #26154: Add a new private _PyThreadState_UncheckedGet() function which
gets the current thread state, but don't call Py_FatalError() if it is NULL.
Python 3.5.1 removed the _PyThreadState_Current symbol from the Python C API to
no more expose complex and private atomic types. Atomic types depends on the
compiler or can even depend on compiler options. The new function
_PyThreadState_UncheckedGet() allows to get the variable value without having
to care of the exact implementation of atomic types.
Changes:
* Replace direct usage of the _PyThreadState_Current variable with a call to
_PyThreadState_UncheckedGet().
* In pystate.c, replace direct usage of the _PyThreadState_Current variable
with the PyThreadState_GET() macro for readability.
* Document also PyThreadState_Get() in pystate.h