Toward a secure TCP/IP stack — Technical
report

Guillaume Cluzel

July 27, 2020

Contents
(1__Introductionl 1
2 The TCP protocol 2
2.1 y verify a stack?l oo 2
2.2 ketslo 2
2.3 Presentation of the protocol| 3
12.3.1 Multitasking in the implementation| 6
|3 Ejﬁaﬂengesl 7
.1 Main f for th rification|. 7
[3.1.1 Improve the functional interface] 7
3.1.2 Respect of the protocoll 8
3.2 echnical problems encountered|. 8
[4__Solutions found| 8
4.1 Order to call the functions|. 8
4.2 Check of returncodel oL 10
. rification of th machinel 10
4.3.1 Overview of the concurrency challengel 10
4.3.2 Functions that process segments| 11
[4.3.3 Concurrency: asynchronous changes of state|. 11
[34 Concurrency: synchronous exchange 12
4 ug found| L e 13
6_Future workl 15

1 Introduction

TCP is a widely used network protocol to communicate in the Internet as it is
used by the HTTP protocol, the FTP protocol, and so many others. Ensuring
the safety of the TCP/IP stack is essential for the safety of a lot of machines.
While a lot of work has been done on formally verifying higher level protocols,
such as SSL/TLS which is built on top of TCP and designed to provide a security
layer to TCP with for example the work done in miTLS , or at a lower level
with the work on RecordFlux to safely parse data segments [2], nothing has been

done to formally verify a secure TCP implementation. However, TLS security
can only be ensured if the underlying TCP implementation is free of bugs.

CycloneTCP is a library developed by the company Oryx Embedded for em-
bedded platforms. A large number of platforms are supported, and the library
can be used with a dozen of OS. The code of the library is written in C and
implements many protocols from low-level network layers like IPv4/IPv6, to
transport layers and application layers like DHCP or HTTP. In particular an
implementation of the TCP protocol is provided.

SPARK 2014 is a programming language designed as a subset of Ada that
helps in making high reliability software by providing powerful static analy-
sis methods. SPARK is able to detect uninitialized variables with control flow
analysis, and can ensure the absence of run-time errors, but also, based on
SMT-solver, functional behavior can be specified for every function and math-
ematically proved.

The aim of this work was to translate some parts of the CycloneTCP TCP/IP
stack in Ada/SPARK to improve the safety of the code. In particular we focused
on the TCP protocol to ensure that the norm is respected in the code.

This report is a synthesis of the challenge of verifying such a protocol and
the solution we found during the internship to go towards a secure protocol.

2 The TCP protocol
2.1 Why verify a TCP stack?

As mentioned in the introduction, TCP protocol is the base of a lot of other
protocols, in particular SSL/TLS. These higher protocols cannot be secure if the
underlying TCP protocol has bugs. An incorrect implementation of the TCP
protocol can lead to a crash in the communication if two machines cannot com-
municate together, to an error in retransmissions, or even to security failures.
CycloneTCP is designed for embedded code, and a failure in the code can be
critical.

2.2 Sockets

A socket is nothing more than a data structure that contains the connection
information, like for example the local or the remote IP address as well as the
state of the connection and other information required by the TCP protocol. In
Ada, a socket will be represented by a pointer to a record type:

type Socket_Struct is record

S_Descriptor : Sock_Descriptor;
S_Type : Socket_Type;
S_Protocol : Socket_Protocol;
S_Net_Interface : System.Address;
S_localIpAddr : IpAddr;
S_Local_Port : Port;
S_Remote_Ip_Addr : IpAddr;
S_Remote_Port : Port;

S_Timeout : Systime;

State : Tcp_State;

-—- Other fields
end record;
type Socket is access Socket_Struct;

A socket is also the structure that is manipulated by the users as an opaque
structure, through an API to perform operations on the socket itself and on the
global environment by sending messages in the network for example.

2.3 Presentation of the protocol

TCP is defined by the norm RFC 793 [3] in a high level language. TCP is
a reliable, ordered and error-checked connection oriented protocol. It means
that two computers have to open a connection first before sending data. The
connection is closed once all the data has been transmitted. The flow of a
connection (if no error happens) contains three main steps:

1. Opening the connection,
2. Sending & receiving the data,
3. Closing the connection.

This mechanism is decribed by a state machine.

As it can be seen in the state machine diagram in figure [T} a socket can take
different states that are subject to change when a message (or a segment) is
sent or received or when an action is performed by the user. A label A/B on an
edge in the graph refers to a stimulus performed on the socket (the reception
of a message, a user action...) for A and a flag sent for B. More precisely, for
A, a text in italic shape refers to an action performed by the user (a call of
a user function) or when it’s a timeout the action is automatically performed
by a timer, and a ACK, SYN or FIN refers to a flag contained in a received
message. The flags in B refer to the flags sent in response of the stimulus by
A. Without giving unnecessary details on the format of a TCP header, we can
describe some flags that can be contained in a TCP header in order to help the
understanding of figure

ACK Acknowledgment field significant. The last message received by the
sender is acknowledged. A field of the header contains the number of
this segment.

SYN Synchronize sequence number. This flag is sent in order to establish a
connection.

FIN No more data from sender. This flag is sent in order to close the connec-
tion.

Different states can be taken by a socket during its lifetime depending on
the state of the connection. The state also gives information about the state of
the remote TCP. Each state has its own signification:

CLOSED represents no connection state at all.

LISTEN represents waiting for a connection request from any remote TCP and
port.

Timeout after two maximum
segment lifetimes (2*MSL)

Timeout /RST

SYN_RECEIVED

LA

CLOSED

Passive open

A

Close

Y

LISTEN

SYN/(SYN & AC Send/SYN
SYN/ACK

Active open/SYN

Close/FIN

ESTABLISHED

FIN_WAIT_1

Close/FIN

ACK/-

Y

ACK)/ACK

FIN_WAIT_2

\F”\‘/k.

FIN/ACK
}

CLOSING

ACK /-

Y

TIME_WAIT

SYN_SENT

(SYN & ACK)/ACK

ACK

FIN/ACK

CLOSE_WAIT

Close/FIN

Y

LAST_ACK

Source: http://www.texample.net

Figure 1: TCP automaton.

=~

http://www.texample.net

SYN-SENT represents waiting for a matching connection request after having
sent a connection request.

SYN-RECEIVED represents waiting for a confirming connection request ac-
knowledgment after having both received and sent a connection request.

ESTABLISHED represents an open connection, data received can be delivered
to the user. The normal state for the data transfer phase of the connection.

FIN-WAIT-1 represents waiting for a connection termination request from the
remote TCP, or an acknowledgment of the connection termination request
previously sent.

FIN-WAIT-2 represents waiting for a connection termination request from the
remote TCP.

CLOSE-WAIT represents waiting for a connection termination request from the
local user.

CLOSING represents waiting for a connection termination request acknowledg-
ment from the remote TCP.

LAST-ACK represents waiting for an acknowledgment of the connection ter-
mination request previously sent to the remote TCP (which includes an
acknowledgment of its connection termination request).

TIME-WAIT represents waiting for enough time to pass to be sure the remote
TCP received the acknowledgment of its connection termination request.

Example of a possible way to establish a connection We present a
scenario on how a connection can be established between two TCPs, when one
TCP (TCP «) is in the state CLOSED and the other (TCP f) is in the state
LISTEN.

1. TCP a wants to initiate a connection with TCP . It sends a SYN segment
to TCP 8 and passes to the state SYN-SENT.

2. TCP B receives a segment SYN. It has to respond to this segment by
a segment containing the flags SYN and ACK (acknowledgment of the
received segment). It changes its state for SYN-RECEIVED.

3. When TCP « receives the segment sent by TCP [containing the flags
SYN and ACK, it only has to send back an ACK of this segment to pass
in the state ESTABLISHED.

4. TCP p receives the ACK of its segment and pass in state ESTABLISHED
too.

At the end of this procedure, the two TCPs are in state ESTABLISHED and can
start to send data. Figure [2] illustrates the procedure described above. This
procedure to open a connection is known as the “three-way handshake” in the
TCP norm.

We want to point out to the reader the differences that exist between the
state machine of ﬁgureand the one that can be found in 3| p. 23]. In particular

CLOSED
i 77777777 SYN ------- » LISTEN
SYN-SENT <~~~ - SYN + ACK - -~ -~ l
L------ ACK - - - » SYN-RECEIVED
ESTABLISHED i

ESTABLISHED

Figure 2: Three-way hanshake procedure. The solid lines represent the transi-
tions between the states and the dashed lines represent the messages sent.

a transition between the states FIN-WAIT-1 and TIME-WAIT has been added. It
reflects the case where the ACK and FIN flags are received in the same segment.
It is an allowed behavior by the norm, and also it is closer to what is done in
CycloneTCP library.

For more details on how two TCPs can establish or close a connection, the
reader can refer to the TCP norm where many scenarios are described and
explained, and more details are given on the state and segments that can be
sent.

2.3.1 Multitasking in the implementation

Different tasks can interact with a socket. The TCP norm gives an example
with three tasks: one for the user calls, one for the arriving segments and one
for the timers. This design has also been adopted in CycloneTCP.

User calls User calls refer to functions that can be called by the user to
control the connection, send, or receive data: OPEN, CLOSE, ABORT, SEND,
RECEIVED. Transition between states of the connection can happen during
the call of these functions since they are intended to control the connection.

Arriving segments In this task, the received segments are processed. The
corresponding messages are sent back. Transitions between states can happen
here when a message is received. For example, this is the case when a message
containing a SYN is received when the socket is in the LISTEN state. It will
automatically send a SYN + ACK in response, and change its state for SYN-
RECEIVED.

Timers The timers control the timeouts like the retransmission timeout to
retransmit a message, or the time-wait timeout to close the connection after an
amount of time. Then, transitions can also happen in this task.

To sum up, a single socket can be seen as a shared structure over multiple
tasks, that can all manipulate it and change the value of its fields. The schema
in figure [3] illustrates that.

Only one task can perform an operation on the socket at the same time. The
access to the fields of the socket are protected by mutex.

Operations on

the socket

« - Synchronous
communications
TIMER USER TASK RECEIVED
TASK s Controlling the o TASK =
Timeout when connection on Processing re- :%
need the user side ceived messages

Figure 3: Concurrency in the TCP protocol.

Two tasks can communicate synchronously or asynchronously together. The
synchronous communications are based on the interface provided by the OS, in
particular with events.

3 Challenges

3.1 Main focus for the verification

The TCP norm defines a lot of behavior that could be verified by automatic
proof. Here is a non exhaustive list of what could be done:

o Verification of the transitions between the states.

o Integrity of the messages sent, i.e. we could check that the sent message
contains the correct flag and the correct sequence and acknowledgment
numbers.

o Integrity of the messages received, i.e. we could check that the messages
received are correctly processed in regard of the flags they contain.

o Functional correctness of the user functions in regard to their specifica-
tions.

Some choices have had to be made in regard to the short time devolved to
the internship, and not every aspect of the TCP norm has been proved yet.
However, some aspects have been selected for the challenge or the importance
they represent. A list of these aspects is presented here and the choices will
be motivated in the next subsections. First of all, we have wanted to improve
the interface of the functions. The other point was to improve the safety of the
protocol itself.

3.1.1 Improve the functional interface

One of the main problems pointed to by the main author of the CycloneTCP
library is that users do not correctly use the API supplied. As a result, some
function calls can be incorrect, either because the arguments are incorrect, or
because the return code of the previous calls has not been checked, which leads
to an incorrect code.

3.1.2 Respect of the protocol

To ensure the safety of the library, it is necessary to ensure that the functions
really do what they are supposed to do. It is a part of the job that has been
done. More especially we have wanted to check if the state machine is respected
by all the user functions in the transition they do. We have also tried to ensure
the correctness of the functions called regarding the TCP state of the socket
before the call to respect the specifications given in the norm.

3.2 Technical problems encountered

The multiple tasks and the changes that can happen at every moment in one
task or another make the verification hard. Multiple interactions exist between
the multiple tasks: synchronous and asynchronous. All these interactions have
to be considered if we want to write correct contracts in regard to what could
be done in other tasks.

As SPARK does not have a native mode to deal precisely with interactions
related to concurrency, we have to model these different interactions by hands by
writing assertions that modify the state of the socket as another task could do it.
In particular the problem has been encountered when we tried to write contracts
for the correctness of the user functions. More details and explanations will be
given in the following section, where we will investigate the solution found to
these technical problems.

4 Solutions found

4.1 Order to call the functions

This part mainly focuses on the high level user functions, the socket functions.
The socket functions are the one called by the user to perform operations on
the network. They are located in the files socket_interface.ad(bls).

It is clear that there exists an order in which the functions have to be called.
This order can be determined by the norm, and must respect the order given
by the graph in figure Then, we want post- and pre-conditions to model a
partial order on the calls of the function. If two functions f; and f are ordered
such that f; < fy where < is a relation over the order in which functions have
to be called, then we want that the post-condition of f; implies the precondition
of fo, i.e. Pre(fa) C Post(f1).

We will give an example over functions Socket_Connect and Socket_Send.
The function Socket_Connect tries to connect to a distant TCP. If the connec-
tion succeeds, the remote IP address of the distant TCP is set in the field
S_Remote_Ip_Addr of the Sock structure. When a user calls the function
Socket_Send, we want to ensure that the connection has already been estab-
lished. This is why a precondition of this function is Is_Initialized_Ip(Sock.S_Remote_Ip_Addr).
This precondition will only be proved if Socket_Connect has been previously
called.

procedure Socket_Connect

(Sock : in out Not_Null_Socket;
Remote_Ip_Addr : in IpAddr;
Remote_Port : in Port;
Error : out Error_T)

with

Pre => Is_Initialized_Ip (Remote_Ip_Addr),
Contract_Cases => (
Sock.S_Type = SOCKET_TYPE_STREAM =>
(if Error = NO_ERROR then
Sock.S_Type = Sock.S_Type'0ld and then
Sock.S_Protocol = Sock.S_Protocol'0ld and then
Is_Initialized_Ip (Sock.S_localIpAddr) and then
Sock.S_Local_Port = Sock.S_Local_Port'0Old and then
Sock.S_Remote_Ip_Addr = Remote_Ip_Addr and then
Sock.S_Remote_Port = Remote_Port and then
Sock.State = TCP_STATE_ESTABLISHED
else
Sock.S_Type = Sock.S_Type'0ld and then
Sock.S_Protocol = Sock.S_Protocol '01d)
others => True)

procedure Socket_Send

(Sock : in out Not_Null_Socket;
Data : in Send_Buffer;
Written : out Natural;
Flags : Socket_Flags;
Error : out Error_T)

with

Pre =>

Is_Initialized_Ip(Sock.S_Remote_Ip_Addr)

Figure 4: An example of how function calls can be ordered by Pre- and Post-
conditions.

4.2 Check of return code

An observation made by Clément Zeller, the main programmer of the library is
that customers do not always think to check the return code of the socket user
functions, to deal with the possibility that the call fails. If the return code is
not checked, some assumption on the result cannot be done.

The post-conditions as we have written them in SPARK, ensure that the
return code is checked before processing continues. Figure [f] shows this mecha-
nism for the procedure Socket_Connect. The post-condition distinguishes the
cases where Error is NO_ERROR and where Error takes another value. As a
result, a user who would write an incorrect code such as

Socket_Connect (Sock, Remote_Ip_Addr, Port, Error);
Socket_Send (Sock, Data, Written, Flags, Error);

would be warned by gnatprove with a message such as

medium: precondition might fail.

whereas the following code is correct

Socket_Connect (Sock, Remote_Ip_Addr, Port, Error);
if Error /= NO_ERROR then
return;
end if;
Socket_Send (Sock, Data, Written, Flags, Error);

So in the end, the precondition of Socket_Send will only be proved if
Socket_Connect has been previously called, and the code checks after that
call that Error = NO_ERROR, and the socket Sock has not been modified.

4.3 Verification of the state machine

The aim of this part is to explain how we check that the transitions done in
a function respect the TCP automaton. In particular, we are interested in
verifying the high level user functions. These functions are not the one in which
most of the transitions are done. Still, the verification of these functions is
important in order to guarantee the safety of the whole library. The functions
of interest are located in the file tcp_interface.ad(bls).

In order to verify the transitions we have read the norm to extract informa-
tion about the allowed transitions, and we have added contracts in the function
tcpChangeState. Since all the transitions are made through this function, an
incorrect transition will lead to a message by SPARK.

As mentioned, since most transitions are done outside the user functions, a
big part of this work was to consider other transitions in other tasks and we
present how we have done it in the following sections.

4.3.1 Overview of the concurrency challenge

To ensure the safety of our library, we need to consider all what can happen
everywhere in the library. All the functions are protected by mutex, which
means that only one operation can be performed at the same time on a socket.

10

Interactions must be considered at two locations: between the function calls,
when the mutex is released and during the function call, when the program
waits for an event. We will explore in the sections and how we have
dealt with these two different concurrent mechanisms.

Before everything else, let’s see where the interferences mainly come from,
and how we have ensured that all have been considered.

4.3.2 Functions that process segments

Almost all the transitions are done in the file tcp_fsm.c. This file has not been
translated in SPARK by a lack of time. Then we do not have strong guarantees
on its functions behavior. However, for formal verification we need to know
what is done in the functions of this file, because a wrong contract can make all
the verification wrong.

The file tcp_fsm.c is in charge of processing the incoming segments. The
reader is strongly encouraged to have a look at this file. The main function of
this file tcpProcessSegment looks for the socket corresponding to the received
segment, and then according to the TCP state of the socket, processes the
segment as expected by calling one of the function tcpState<StateName>. The
family of functions tcpState<StateName> check the information contained in
the segment and can perform a change of state in the socket struct depending
on the flags received.

In these functions, a change of state can be performed, as mentioned, thanks
to the function tcpChangeState. To summarize what is done when a message
is received, rather than reading the code and locate all the calls to functions
tcpChangeState, we have used KLEEE It helped to find behaviors that we had
not imagined at first. Anyway, we cannot state that all the work done with
KLEE is complete, and we would need to rewrite this part in SPARK to have
a code formally proved.

All the work related to KLEE is present in the folder klee/ and can be
compiled and run thanks to the makefile to reproduce the results. Roughly, what
is done is creating a random incoming message, put the socket in the desired
state and call the desired function to see what final states can be obtained.

Finally, all the results found by KLEE have been reported as a post-condition
of the function Tcp_Process_0One_Segment. This function is essential for all
the verification of concurrent parts and is reused everywhere the concurrency
is involved to compute possible interferences. It follows that the safety of the
code relies on the confidence we have in this function.

4.3.3 Concurrency: asynchronous changes of state

Between the user function calls, segments can be received and these receptions
can lead to changes of the state of the socket. Between two function calls, an
infinite number of segments can be potentially received. The reception of one or
zero segments is modeled by the function Tcp_Process_0One_Segment in terms of
change of states. Then we have to consider the iteration of Tcp_Process_0One_Segment
in order to compute the result of the reception of multiple messages.

Let — be the transition function in the TCP automaton restricted to the
transitions that can be performed by the reception of a message and its auto-

Thttps://klee.github.io

11

https://klee.github.io

Algorithm 1: Reflexive and transitive closure of
Tcp_Process_One_Segment

function Tcp_Process_Segment (Socket)
Slast := Socket;
S = Slast;
for i =1 to 3 do
Siast := Tcp_Process_One_Segment(Sj,st) ;

S := S U Sjast;
end
return S;

end

matic response mechanism. Then we have —= Tcp_Process_0One_Segment and
we need to consider the reflexive transitive closure —* of —, with

G U _yn

neN

Now, by examining the TCP automaton in figure |1, we see that all state is only
reachable by a state at a distance less than 3 (the maximum path is between
SYN-SENT and CLOSE-WAIT if we pass by the states SYN-RECEIVED and ES-
TABLISHED) without user action. Since we only consider the transitive closure
in term of states, we can significantly reduce the number of iteration of — to
compute —* and finally we get:

3
—*= U —"
n=1

It follows that algorithm [1|is good enough to compute the transitive closure of
the function Tcp_Process_0One_Segment by taking advantage of the fact that
SPARK can unroll small loops to obtain more precise results. The contract of
Tcp_Process_Segment is manually written and proved with SPARK.

In the user functions, we have added a call to Tcp_Process_Segment every-
where there is a call to Os_Acquire_Mutex (Net_Mutex). Doing that helps to
ensure that all possible input states have been considered.

4.3.4 Concurrency: synchronous exchange

The other mechanism to deal with concurrency is probably more difficult to
comprehend and the use of the function Tcp_Process_One_Segment is even
more noticeable.

The C code contains a function tcpWaitForEvents in the file tcp_misc.c
that checks if the event is true when the function is called, by calling the function
tcpUpdateEvents. If the wait is not completed at the time the function is called,
then the mutex that was previously locked is released until the expected event
happens. Then, everything can happen meanwhile.

In the code, the function tcpUpdateEvents is called at different locations;
it updates the events true for the socket and it can raise the desired event. In

12

S N N

Algorithm 2: Function to compute the possible state after when wait-
ing for a particular event.

function Tcp_Wait_For_Events(Socket, Fvent, Event Mask)
Slast := Socket;
S = Slast;
E := Tcp_Update_Events(Sigst);
if (F & Fvent_Mask) # 0 then
‘ return S;
end
fori=1to 3 do
Siast := Tcp_Process_One_Segment(Sj,st) ;
S = 5U Siasts
E := Tcp_Update_Events(Siust);
if (F & FEvent_Mask) # 0 then
‘ return S;
end
end
return (;
end

particular this function is called each time the state of the socket is changed.
This is sufficient for our purpose since we are only interested in the state changes.

When a segment is received, the function tcpUpdateEvents is called if a
change of state happens. Then, we can consider the algorithm [2| that reuses
Tcp_Process_One_Segment to compute the most precise set of possible final
states after the wait. (This is done in the function Tcp_Wait_For_Events_Proof,
the function dedicated to proof in file tcp_misc_binding.add.)

We can compute precisely the states reached for each expected event thanks
to the fact that SPARK unrolls loops.

Weakness If two tasks want to lock the same mutex at the same time, which
one wins? This is probably something to discuss with Clément, because the func-
tion tcpWaitForEvents could have a different semantic than what we imagine
at first.

4.4 Bug found

Thanks to this work, a bug has been found. The contract puts on the function
Tcp_Change_State warned of an unauthorized transition. We reproduce the
code that leads to this transition and we will explain why it is a bug.

case Sock.State is
when TCP_STATE_SYN_RECEIVED
| TCP_STATE_ESTABLISHED =>
-— Flush the send buffer
Tcp_Send (Sock, Buf, Ignore_Written,
SOCKET_FLAG_NO_DELAY, Error);
if Error /= NO_ERROR then

13

10

11

12

13

14

16

17

18

19

20

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

return;
end if;

-— Make sure all the data has been sent out
Tcp_Wait_For_Events

(Sock => Sock,

Event_Mask => SOCKET_EVENT_TX_DONE,
Timeout => Sock.S_Timeout,

Event => Event);

-- Timeout error?

if Event /= SOCKET_EVENT_TX_DONE then
Error := ERROR_TIMEQUT;
return;

end if;

-- Send a FIN segment
Tcp_Send_Segment

(Sock => Sock,

Flags => TCP_FLAG_FIN or TCP_FLAG_ACK,
Seq_Num => Sock.sndNxt,

Ack_Num => Sock.rcvNxt,

Length => 0,

Add_To_Queue => True,

Error => Error);

-- Failed to send FIN segment?

if Error /= NO_ERROR then
return;

end if;

-- Switch to the FIN-WAIT-1 state
Tcp_Change_State (Sock, TCP_STATE_FIN_WAIT_1);

The function Tcp_Send will change the state of the socket for the state
ESTABLISHED or CLOSE-WAIT in our case, if no error happens. Moreover the
next function at line [12] has a contract that contains:

(if (Event_Mask and SOCKET_EVENT_TX_DONE) /= 0 then
(if Event = SOCKET_EVENT_TX_DONE then
-— RST segment received
Model (Sock) = (Model(Sock)'0ld with delta
S_State => TCP_STATE_CLOSED,
S_Reset_Flag => True) or else
(if Sock.S_State'0ld = TCP_STATE_CLOSE_WAIT then
Model (Sock) = Model(Sock) '0ld or else
elsif Sock.S_State'0ld = TCP_STATE_ESTABLISHED then
Model (Sock) = Model(Sock) '01ld or else
Model (Sock) = (Model(Sock)'0ld with delta
S_State => TCP_STATE_CLOSE_WAIT))))

which means that at line the socket can either be in state ESTABLISHED,
CLOSE-WAIT or CLOSED if the connection had been reset by the remote during
the call of Tcp_Wait_For_Events, when the mutex was released. The precon-
dition of the function Tcp_Change_State encodes the allowed transitions that
we can see in the automaton in [l and thus the transition CLOSE-WAIT —

14

FIN-WAIT-1 is not allowed, nor the transition CLOSED — FIN-WAIT-1.

This incorrect behavior has been detected thanks to the use of KLEE and
the improvement on how function’s closure are computed. The contract for the
call

Tcp_Wait_For_Events (Sock, SOCKET_EVENT_TX_READY,
Sock.S_Timeout, Event);

was not correct at first, because it was written by hands and thus not enough
precise. Then, the possible state at the end of the function Tcp_Change_State
was reduce to ESTABLISHED and the same problem existed for the call at line
At this point no problem was detected with SPARK, because the contracts
were true. With KLEE, some transitions that were not considered at first,
because hide in subfunctions have been discovered. In particular there exists
a transition from SYN-RECEIVED to CLOSE-WAIT if a FIN flags is present
in the same segment of the ACK that was not spotted before. Putting these
information in the function Tcp_Process_0One_Segment, and proving the post-
condition of the function Tcp_Wait_For_Events directly with SPARK using
algorithm 2, rather than not proving it like it was done before, helps to correct
the contracts and find the bug.

5 Future work

Other improvements that could be done in the future (this is a not exhaustive
aggregate of ideas, this list is subject to change):

o Fully translate the file tcp_misc.c in Ada to have more guarantees.

o Same for the file tcp_fsm. c that has been investigated with KLEE. But it
is not enough and we need more guarantees for this file, in order to prove
the interactions between tasks first, and also to prove the correctness of
this part of code w.r.t. the TCP norm.

e The translation only considers one possible preprocessing. A future work
would be considering all the possible preprocessing by adding constants
like in the C version. An harder work is to find a way to keep a coher-
ence between the C preprocessing and the Ada preprocessing. It can be
achieved with an automatic tool, for example.

e It is not checked that the correct flags have been sent before changing of
state. It could be added by using ghost variables, or abstract states.

References

[1] Karthikeyan Bhargavan et al. “Implementing TLS with verified crypto-
graphic security”. In: 2013 IEEE Symposium on Security and Privacy.
IEEE. 2013, pp. 445-459.

[2] Tobias Reiher et al. “RecordFlux: Formal Message Specification and Gener-
ation of Verifiable Binary Parsers”. In: Lecture Notes in Computer Science
(2020), pp. 170-190. 1sSN: 1611-3349.

[3] Transmission Control Protocol. RFC 793. Sept. 1981.

15

	Introduction
	The TCP protocol
	Why verify a TCP stack?
	Sockets
	Presentation of the protocol
	Multitasking in the implementation

	Challenges
	Main focus for the verification
	Improve the functional interface
	Respect of the protocol

	Technical problems encountered

	Solutions found
	Order to call the functions
	Check of return code
	Verification of the state machine
	Overview of the concurrency challenge
	Functions that process segments
	Concurrency: asynchronous changes of state
	Concurrency: synchronous exchange

	Bug found

	Future work

